

CONCURSO

INGENIERÍA Y CONSTRUCCIÓN

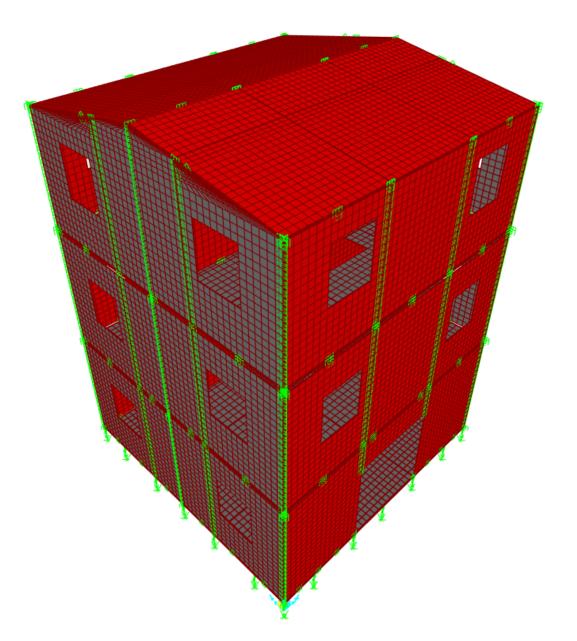
MEMORIAS, INVESTIGACIONES PATENTES, PROYECTOS DE TÍTULOS

La VII Versión del Concurso, tiene como objetivo destacar a aquellos alumnos de las carreras de ingeniería y construcción civil que hayan desarrollado o se encuentren desarrollando memorias de título, proyectos de título, investigaciones o patentes en torno a la madera.

EQUIPO **ING2837**

SISTEMA DE AISLAMIENTO SÍSMICO TRIDIMENSIONAL APLICADO A ESTRUCTURA DE TRES PISOS EN MADERA CONTRALAMINADA (CLT)

Ariel Araya



SISTEMA DE AISLAMIENTO SÍSMICO TRIDIMENSIONAL APLICADO A ESTRUCTURA DE TRES PISOS EN MADERA CONTRALAMINADA (CLT)

Autor: Ariel Araya Piña

Guía: Sergio Reyes Arriagada



Antecedentes

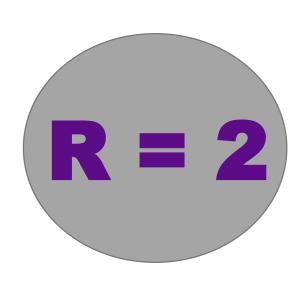
Tableros macizos de madera

Placas metálicas y tornillos

Sofie Project Italia - Japón

Murray Grove Inglaterra

UDEC Chile



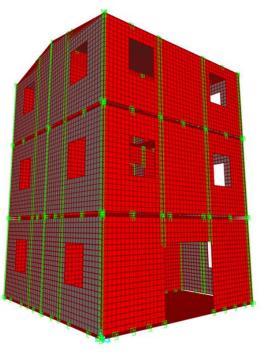
Descripción del Problema

- Normativa restrictiva
- Aislamiento Sísmico Tradicional

Hold-down Angle bracket Screws ROOF THECKNESS 85 mm 3 AB 3

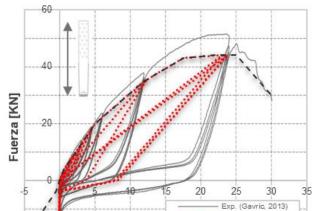
Caso de estudio

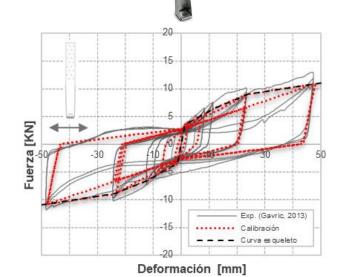
- Altura total de 10m y una planta 7x7m.
- Losas, muros y techumbre con paneles de 142mm, 85mm y 85mm de espesor respectivamente.
- Hold-downs, angle-bracket y juntas spline para muros adyacentes y en perpendicular.
- Distribución de conectores angle-brackets por planta.
- Abertura de ancho 2.26m en los muros del primer piso en orientación norte-sur.

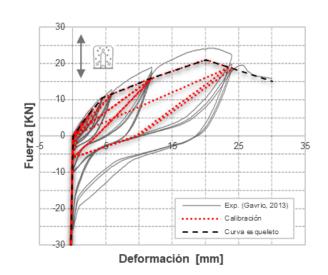


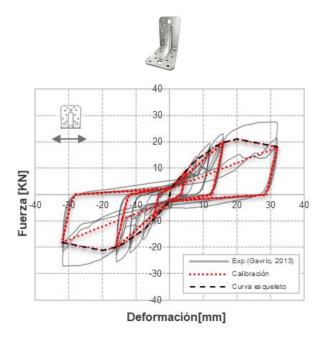
Validación numérica

Modelo	Periodo [s]	Desp. máx. de techo [mm]	Acel. máx techo [m/s ²]	
Experimental	0.18	25.70	11.00	
Modelación propia	0.21	21.58	11.88	
Error (%)	17%	16%	8%	


- Paneles CLT → Elementos shell lineales con propiedades isotrópicas.
- Conectores → Elementos link no-lineales.
- Diafragmas rígidos para losas y techo.
- Análisis tiempo-historia → Registro El Centro escalado a un PGA 0.5g
 - Análisis FNA con vectores Ritz
 - 1500 modos.
 - Carga vertical con función rampa.
 - 2% Amortiguamiento viscoso (Rinaldin, 2016).


INGENIERÍAY CONSTRUCCIÓN Calibración de Conectores




Modelación en el software SAP2000.

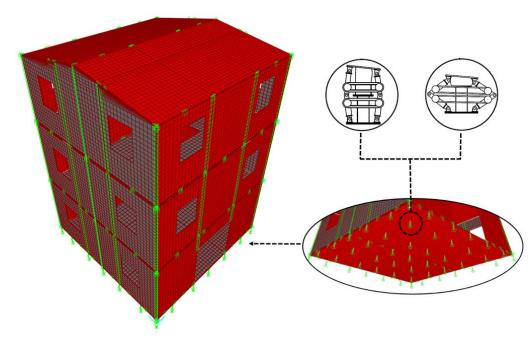
 Se consideran conectores que representan la interacción:

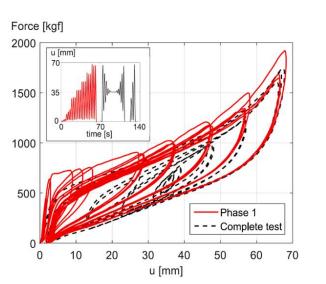
Fundación →muros 1^{er} piso Losas →muros pisos superiores

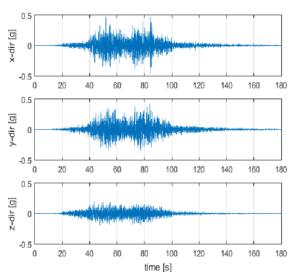
- Elementos link no-lineales con modelo histerético Pivote considerando constitutivas a tracción y corte.
- Calibrados a través de la disipación de energía equivalente por ciclo en base a los ensayos de Gavric 2013.

Aislamiento sísmico Tridimensional- ISO3D-2G

- Este sistema provee de flexibilidad rotacional a la base de la estructura, generando un modo de aislación por rocking.
- El funcionamiento validado de manera experimental y numéricamente en un estanque de almacenamiento de vino.
- El dispositivo utiliza elastómeros deformados a compresión de alto amortiguamiento no vulcanizados.

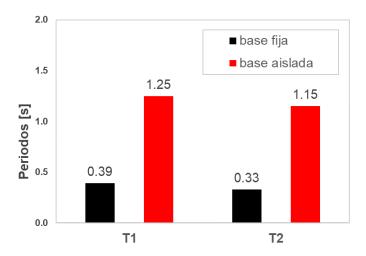


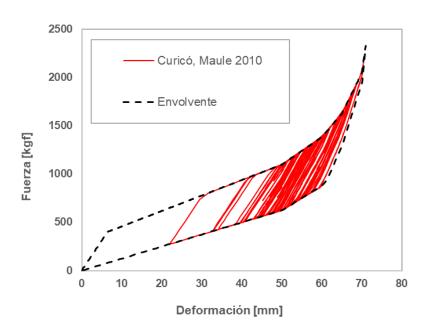




Desempeño Sísmico en Chile

- Registro Curicó, Maule 2010 en sus tres direcciones.
- Dispositivos representados a través de una configuración no-lineal de elementos link que representan las propiedades nolineales.
- 49 elementos distribuidos en la base.

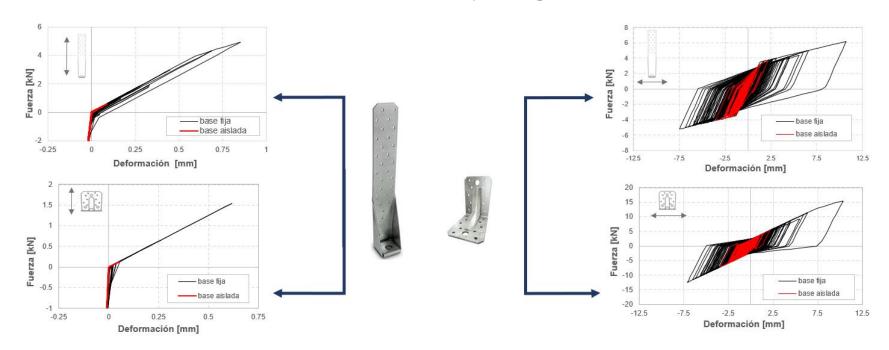




Respuesta Local

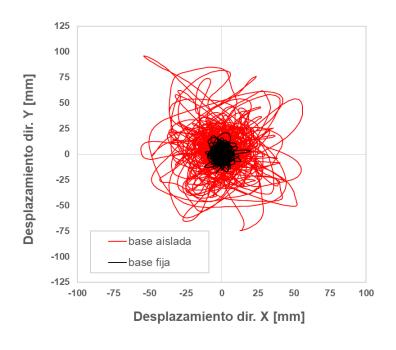
 Periodo modal lineal de tres veces mayor para la estructura de base aislada, respecto a la de base fija.

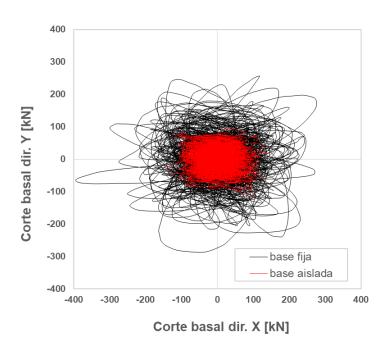
 La constitutiva del dispositivo consiste en un elemento MultiLinear conectado en paralelo a un Friction Spring Damper; que se conecta en serie a un elemento friccional de radio infinito.



Respuesta Local

- Reducciones de hasta en un 90% en las deformaciones a esfuerzos de tracción y en rango elástico.
- Reducción en hasta un 67 % y 89% en las deformaciones de corte producidas en conectores hold-down y angle-brackets respectivamente.

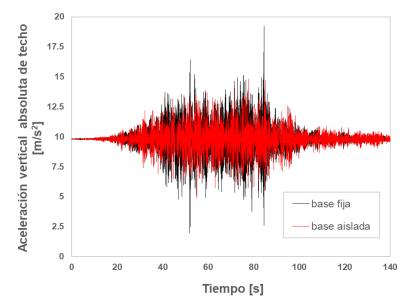




Respuesta Global

- Los desplazamientos relativos de techo aumentaron más de dos veces para la dirección X y hasta cuatro veces para la dirección Y.
- Reducción de hasta un 60% para el corte basal en ambas direcciones.



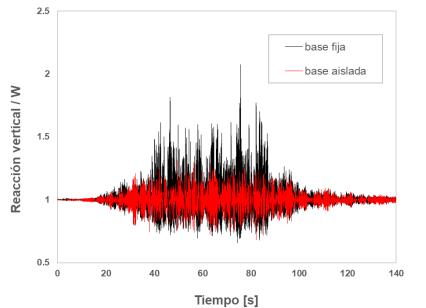

Respuesta Global

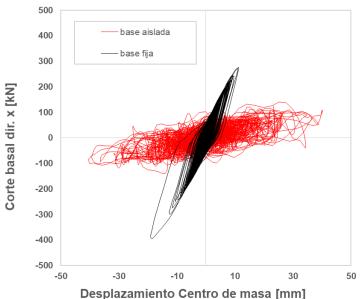
Aceleración máxima absoluta	Aceleración lateral [m/s²]			Aceleración vertical [m/s²]		
	techo	2 ^{do} piso	1 ^{er} piso	techo	2 ^{do} piso	1 ^{er} piso
Base fija	10.92	8.56	9.62	19.20	18.50	19.12
Base aislada	5.61	4.22	9.30	14.82	15.07	13.71
Reducción	49%	51%	3%	23%	19%	28%

Respuesta Global

- Reducción de hasta un 64% en la reacción vertical.
- La relación de desplazamiento centro de masa con el corte basal en dirección X.

Base fija


- T _{efectivo} = 0.3s
 ξ _{efectivo} =14%


Base aislada

- T _{efectivo} = 0.92s
 ξ _{efectivo} = 23%

Conclusiones

- Se validó la respuesta sísmica de la estructura en base a el ensayo experimental de Sofie Project.
- La efectividad del sistema de aislamiento tridimensional:
 - Periodo
 - Desplazamientos
 - Corte basal
 - Amortiguamiento

 - Altamente competitivo.
 - Técnicamente factible
 - Económicamente viable

- Aceleración vertical
- Aceleración lateral
- Reacción vertical.
- Deformaciones en conectores

udp Escuela de Ingeniería en Obras Civiles

