

### **WOOD IN ARCHITECTURE**

Semana de la Madera-Santiago, Chile-2 September 2016

Brian Court, AIA, LEED AP The MILLER HULL Partnership www.millerhull.com

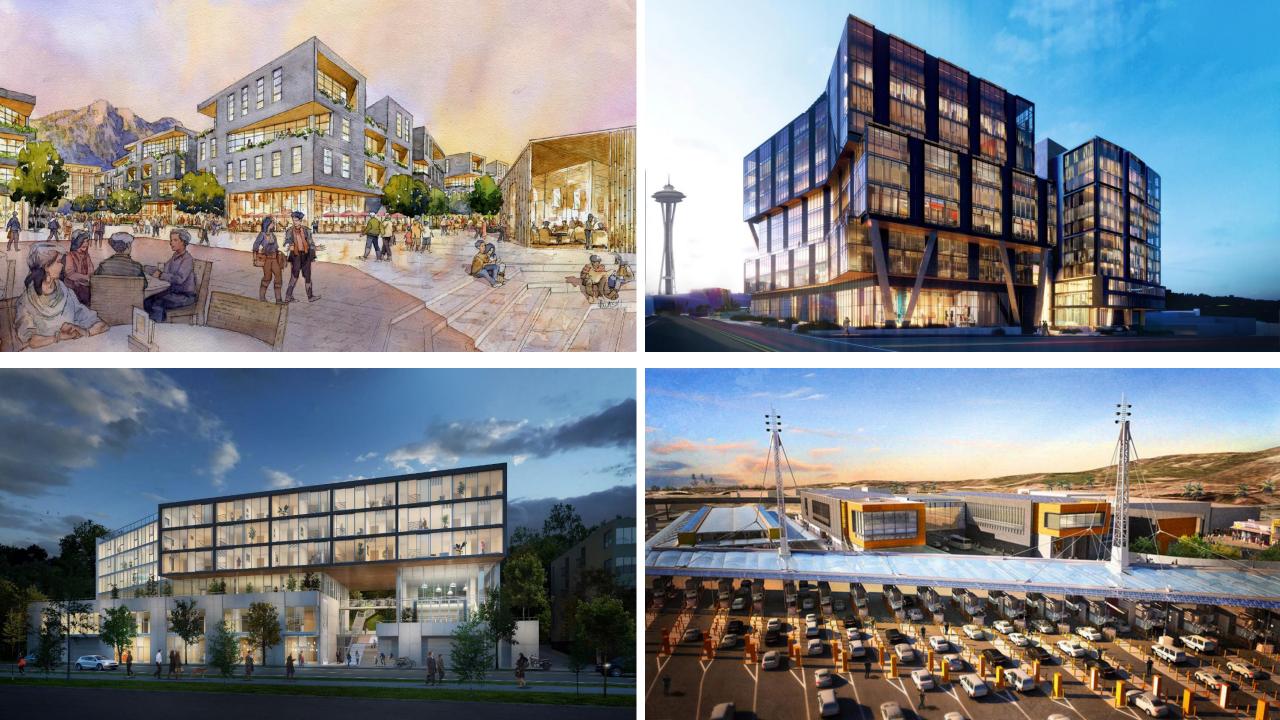


#### **THE MILLER HULL PARTNERSHIP**

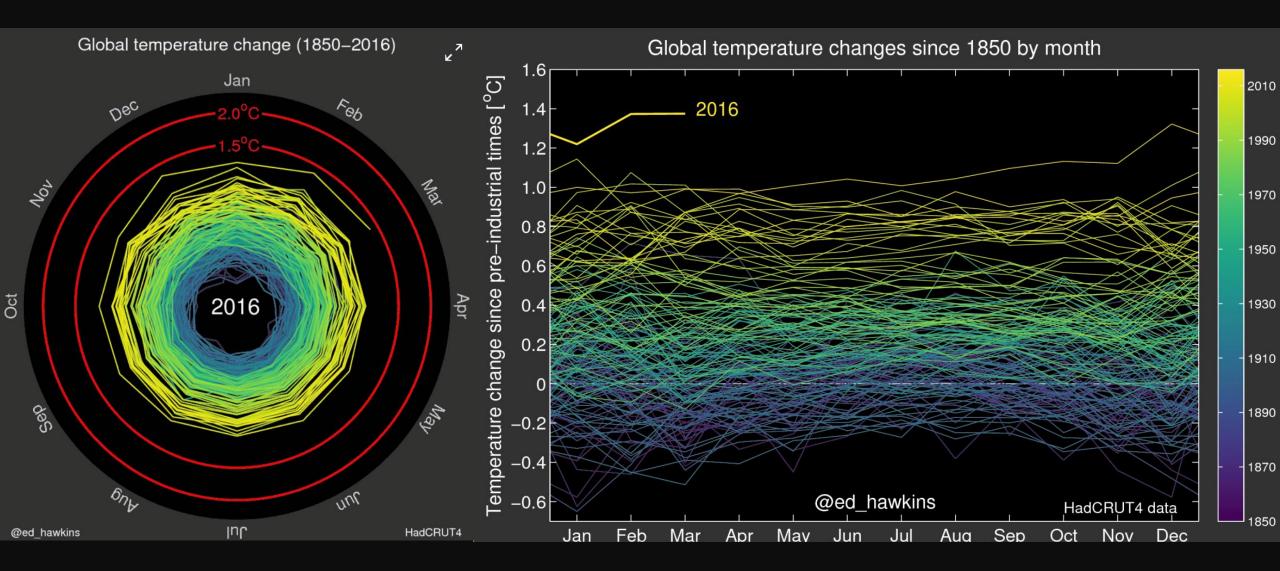
**SEATTLE + SAN DIEGO** 

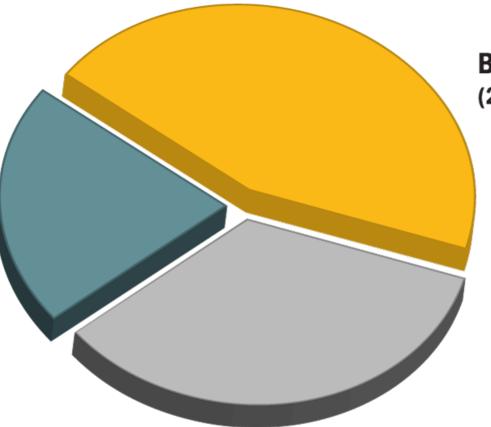
### 1977-2016












## GLOBAL ISSUES CONFRONTING ARCHITECTURE





Industry 21.1%

(1116 MMT CO<sub>2</sub>e)

**Buildings 44.6%** (2358 MMT CO<sub>2</sub>e)

Transportation 34.3% (1816 MMT CO<sub>2</sub>e)

#### U.S. CO<sub>2</sub> Emissions by Sector

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).



# The manufacture of concrete and steel are responsible for nearly 10% of global CO2 emissions.

"The world is facing an imminent, unprecedented, multi-lateral environmental crisis: climate disruption; ocean acidification; an epidemic of extinction; severe shortages of fresh water; loss of topsoil; vulnerable monocultures; a global wave of toxic, carcinogenic, and endocrine-disrupting chemicals; overfishing; clear cutting; and an exploding human population with growing demands for scarce resources

These are not problems for your children. These are our problems.

We need right now is a major leap forward, and a quantum change in our environment. "

-Denis Hayes, President, Bullitt Foundation





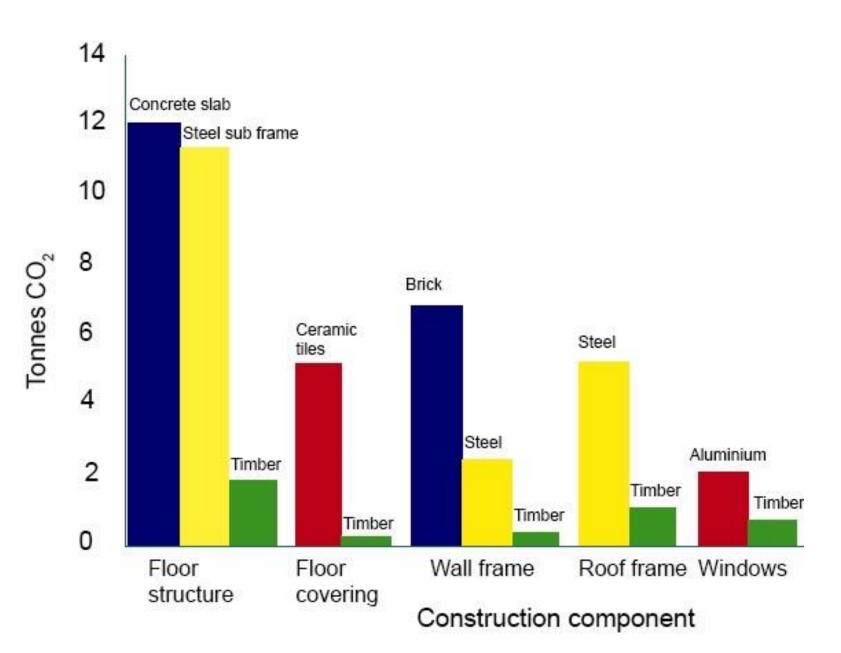
#### BREEAM

- first environmental assessment standard
- based in Europe since 1990
- points-based spreadsheet system
- predictive not performance based

#### LEED

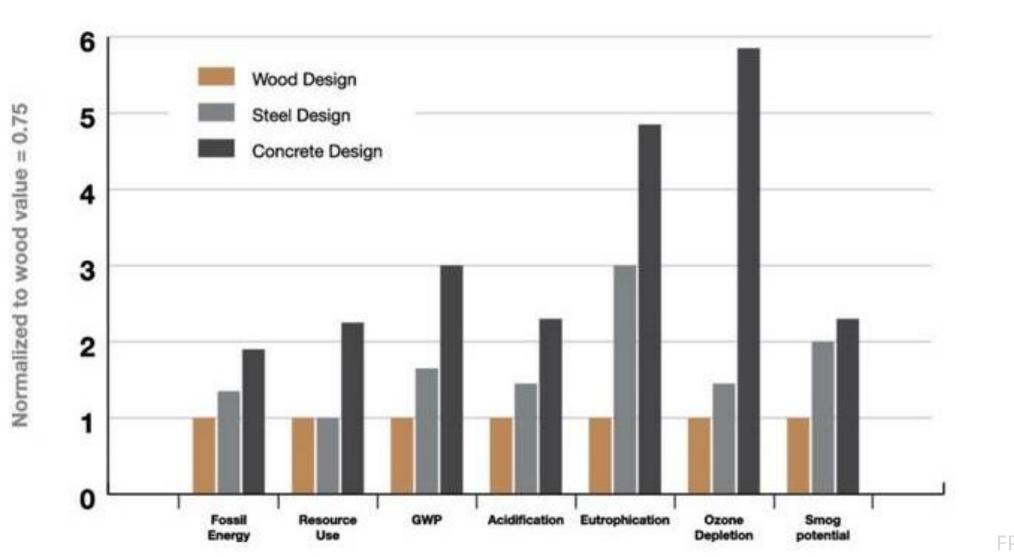
- most common measure of sustainability
- based in US since 1994
- points-based spreadsheet system
- predictive not performance based

#### LIVING BUILDING CHALLENGE


- most rigorous standard
- net positive ENERGY, WATER + WASTE
- low carbon, regionally sourced, non-toxic MATERIALS
- civilized environments (natural light + ventilation)
- all wood must be FSC

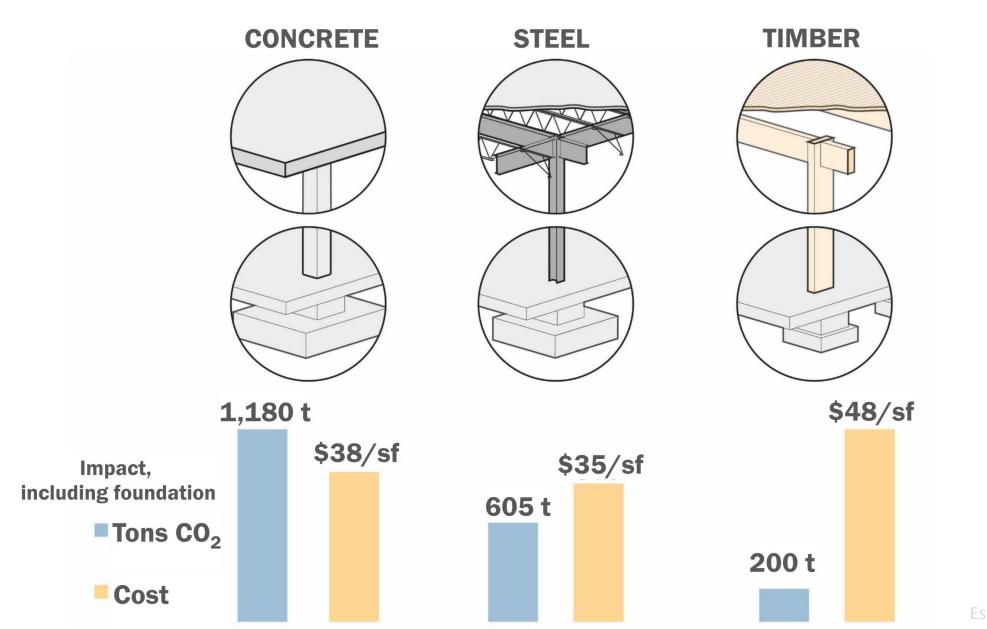


#### LIVING BUILDING CHALLENGE


# WHY WOOD?

#### **CONSTRUCTION COMPONENTS AND CO2**




SOURCE: Treehugger

#### **STRUCTURAL SYSTEMS EMBODIED EFFECTS**



SOURCE: FPInnovations

#### STRUCTURAL SYSTEMS COST & CARBON EMISSIONS IMPACT



SOURCE: kew Dumez Ripple

















#### **CLEAR CUT**

- destroys ecosystem
- monoculture

#### SUSTAINABLE FOREST MANAGEMENT

- preserves habitat
- diversity of species and maturity



#### PROGRAM FOR THE ENDORSEMENT OF FOREST CERTIFICATION SCHEMES (PEFC)

- most common certification standard
- nearly 2/3 of all certified forest land is PEFC



#### FOREST STEWARDSHIP COUNCIL (FSC)

- second largest forest standard
- the most rigorous
- fastest growing standard

# CASE STUDY #1 The Bullitt Center

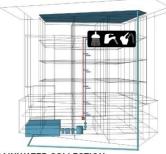
"Our desire is to open a wedge into the future so that we, and others can see what is possible in a contemporary office building."

Denis Hayes Bullitt Foundation, President State and













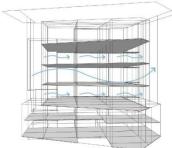



250 YEAR STRUCTURE HEAVY TIMBER, CONCRETE & STEEL

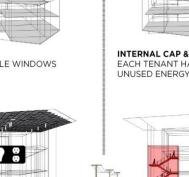


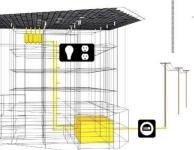
RAINWATER COLLECTION 100% DEMAND MET ON SITE 50,000 GALLON CISTERN

1A

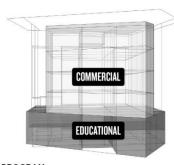

100% TREATMENT ON SITE

**EVAPOTRANSPIRATION & INFILTRATION** 


GREYWATER



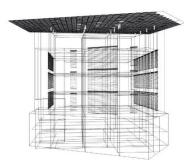

MECHANICAL GROUND SOURCE HEAT EXCHANGE RADIANT HEATING/COOLING HEAT RECOVERY AIR SYSTEM



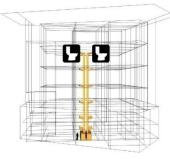

NATURAL VENTILATION NIGHT FLUSH & OPERABLE WINDOWS






ENERGY 100% RENEWABLE ON SITE GRID USED AS BATTERY



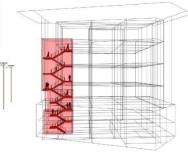

PROGRAM OCCUPANCY PRIVATE USERS ABOVE, PUBLIC FOCUS USERS AT GRADE



50 YEAR SKIN HIGH PERFORMANCE ENVELOPE



25 YEAR TECHNOLOGY ACTIVE SOLAR CONTROL PHOTOVOLTAICS




¥ A

WASTE COMPOST 100% TREATMENT ON SITE



EACH TENANT HAS AN ENERGY BUDGET; UNUSED ENERGY CAN BE TRANSFERRED

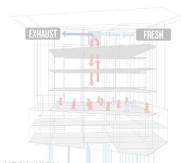


IRRESISTIBLE STAIR ELEVATOR ALTERNATIVE, HEALTHIER OCCUPANTS, ENGAGEMENT WITH STREET



#### NET ZERO WATER

#### NET ZERO ENERGY

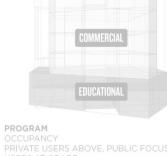

#### OCCUPANT



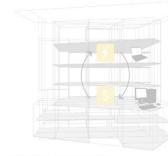
250 YEAR STRUCTURE HEAVY TIMBER, CONCRETE & STEEL



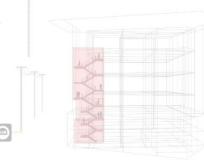
RAINWATER COLLECTION 100% DEMAND MET ON SITE 50,000 GALLON CISTERN




MECHANICAL GROUND SOURCE HEAT EXCHANGE RADIANT HEATING/COOLING HEAT RECOVERY AIR SYSTEM



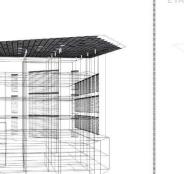

NATURAL VENTILATION NIGHT FLUSH & OPERABLE WINDOWS


ENERGY

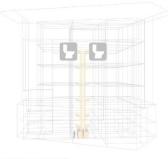


PRIVATE USERS ABOVE, PUBLIC FOCU USERS AT GRADE




INTERNAL CAP & TRADE EACH TENANT HAS AN ENERGY BUDGET; UNUSED ENERGY CAN BE TRANSFERRED




IRRESISTIBLE STAIR ELEVATOR ALTERNATIVE, HEALTHIER OCCUPANTS, ENGAGEMENT WITH STREE



50 YEAR SKIN HIGH PERFORMANCE ENVELOPE

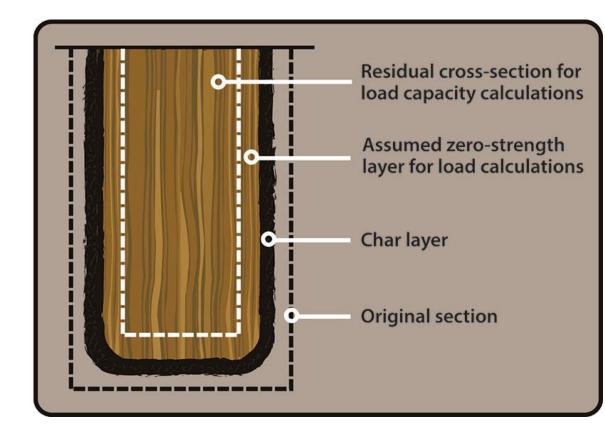


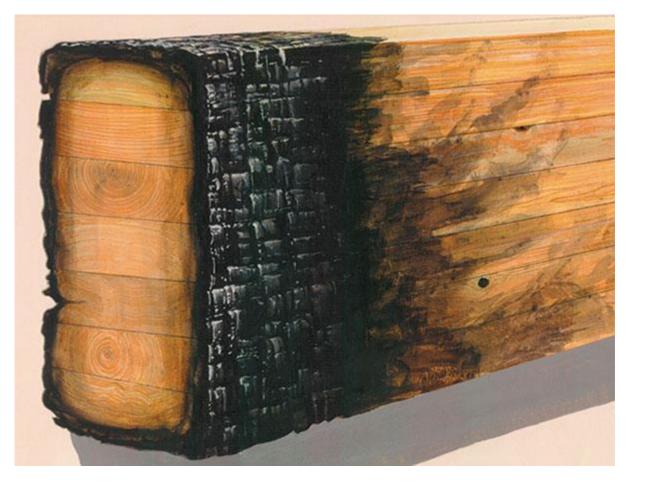
25 YEAR TECHNOLOGY ACTIVE SOLAR CONTROL PHOTOVOLTAICS



WASTE COMPOST 100% TREATMENT ON SITE

GREYWATER



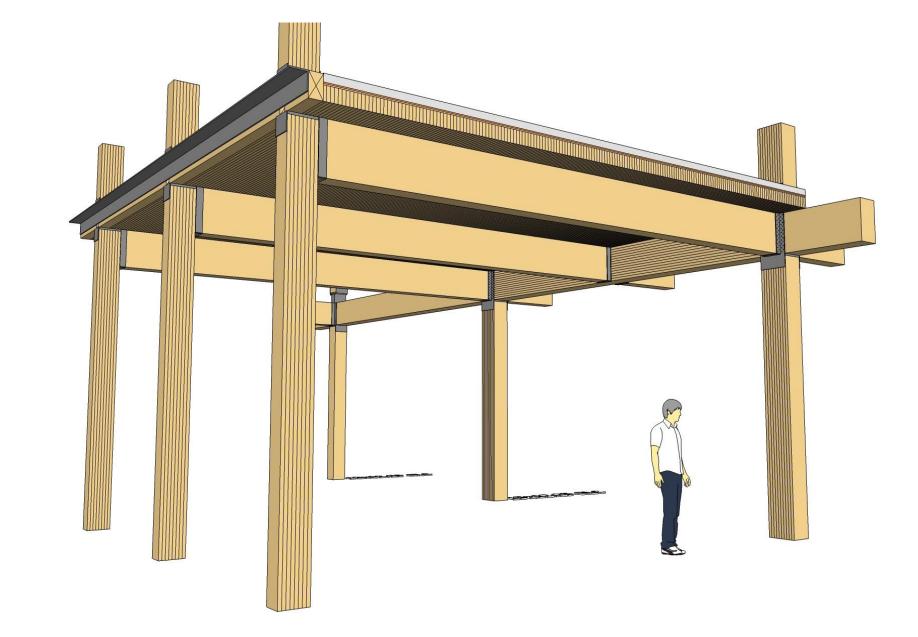








#### **GLU-LAMINATED TIMBER**

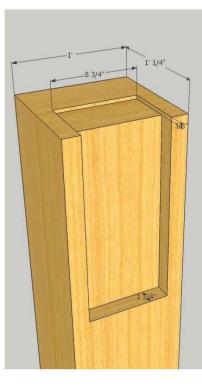




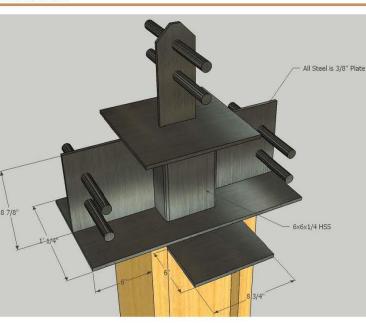

#### **FIRE PROTECTION**

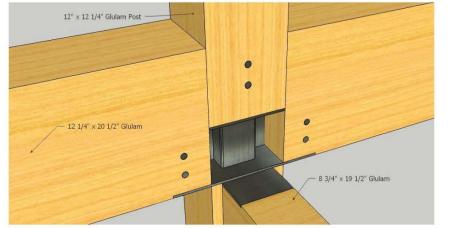


**Bullitt Center, The Miller Hull Partnership** 

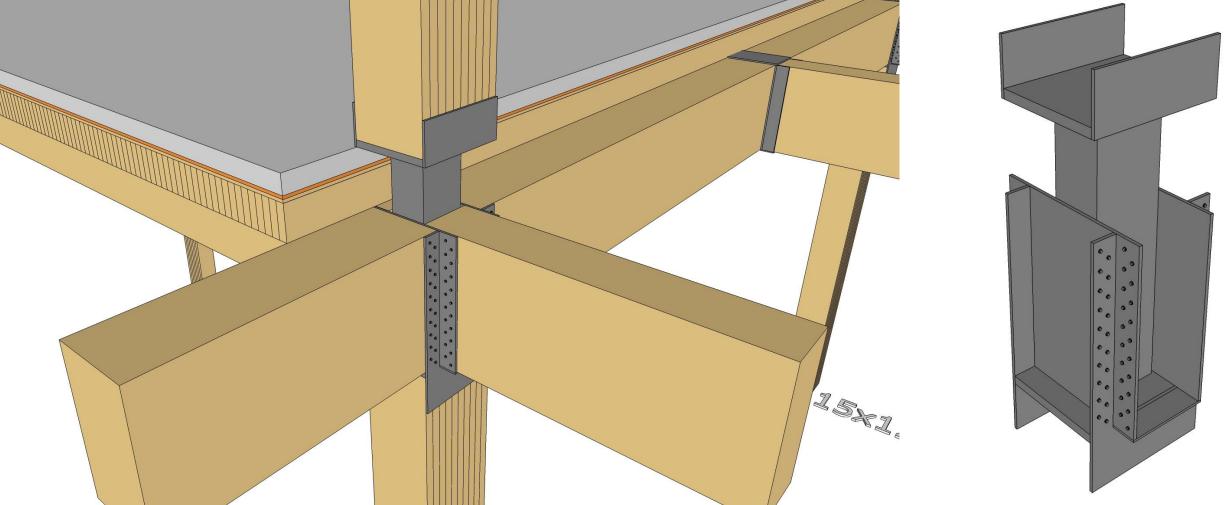

Wood Innovation Center, Michael Green Associates







4655 Highway 3A Nelson BC V1L 6N3 Tel: 250.825.4300 Fax: 250.825.4306 spearheadtimberworks.com

Cascadia Center-Proposed Raising Sequence




Proposed Joinery Detail: Post @ Exterior Wall (Fasteners not Shown)





17











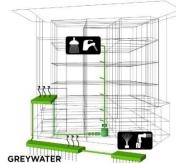
## NET ZERO WATER

#### NET ZERO

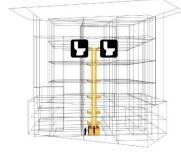


250 YEAR STRUCTURE

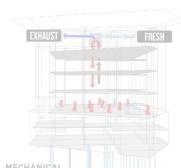



**50 YEAR SKIN** 




25 YEAR TECHNOLOGY

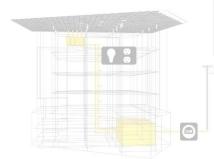



RAINWATER COLLECTION 100% DEMAND MET ON SITE 50,000 GALLON CISTERN



100% TREATMENT ON SITE **EVAPOTRANSPIRATION & INFILTRATION** 

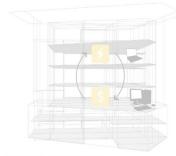



WASTE COMPOST 100% TREATMENT ON SITE

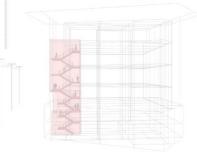


MECHANICAL



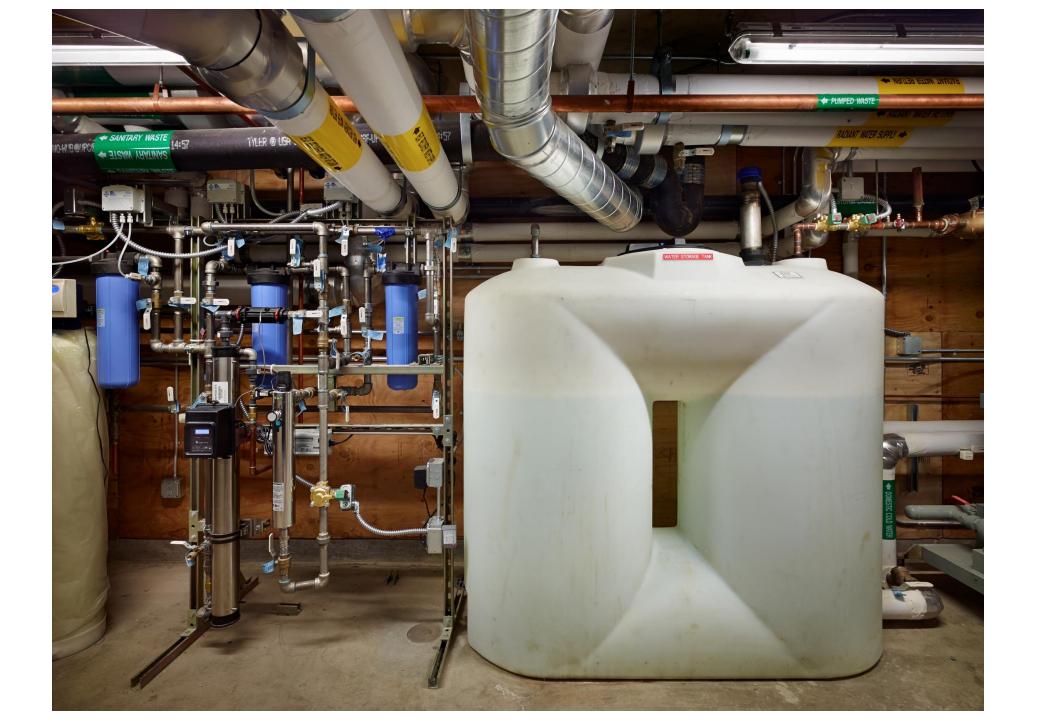

NATURAL VENTILATION




ENERGY



PROGRAM




**INTERNAL CAP & TRADE** 

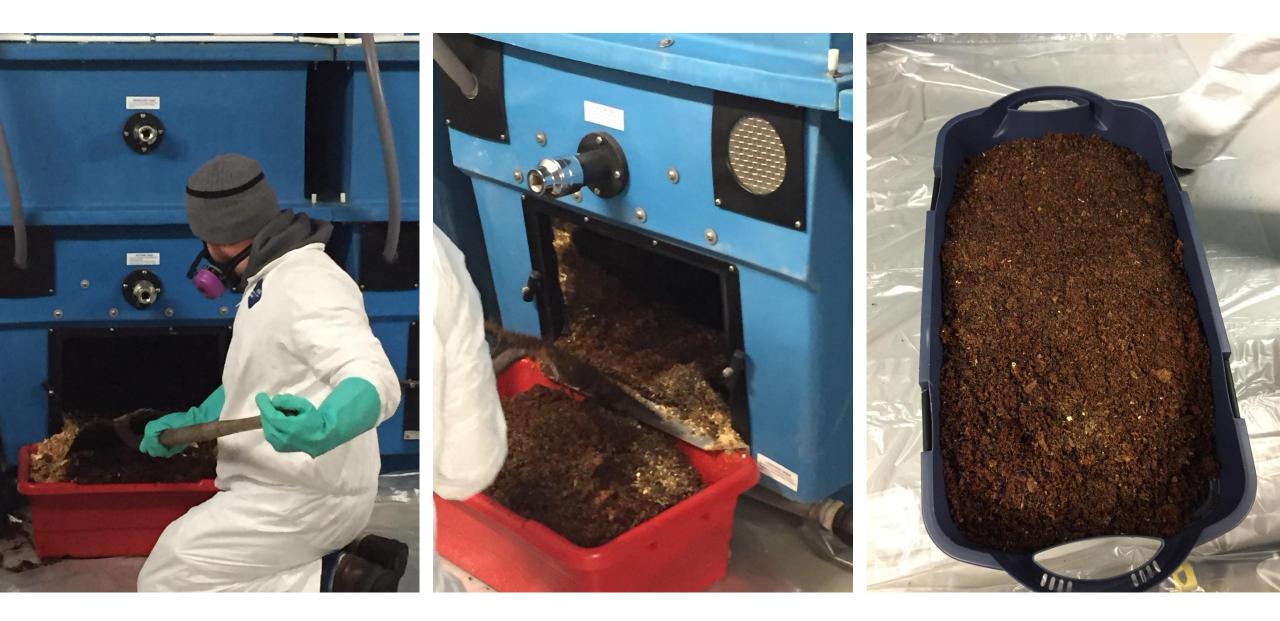


IRRESISTIBLE STAIR





# **GRAY WATER TREATMENT**


**GREEN ROOF** FILTRATION ----------------------------

> POST-TREATMENT INFILTRATION

> > IMAGE: MILLER HULL

and a second s

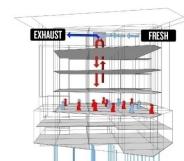






#### NET ZERO WA

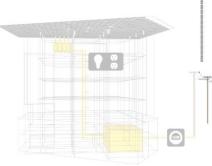
### NET ZERO ENERGY




250 YEAR STRUCTURE



RAINWATER COLLECTION


GREYWATER

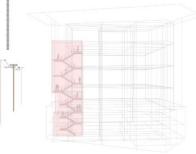


MECHANICAL GROUND SOURCE HEAT EXCHANGE RADIANT HEATING/COOLING HEAT RECOVERY AIR SYSTEM

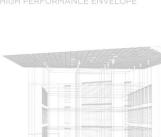


NATURAL VENTILATION




ENERGY

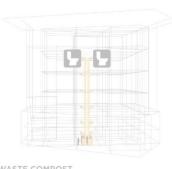



PROGRAM



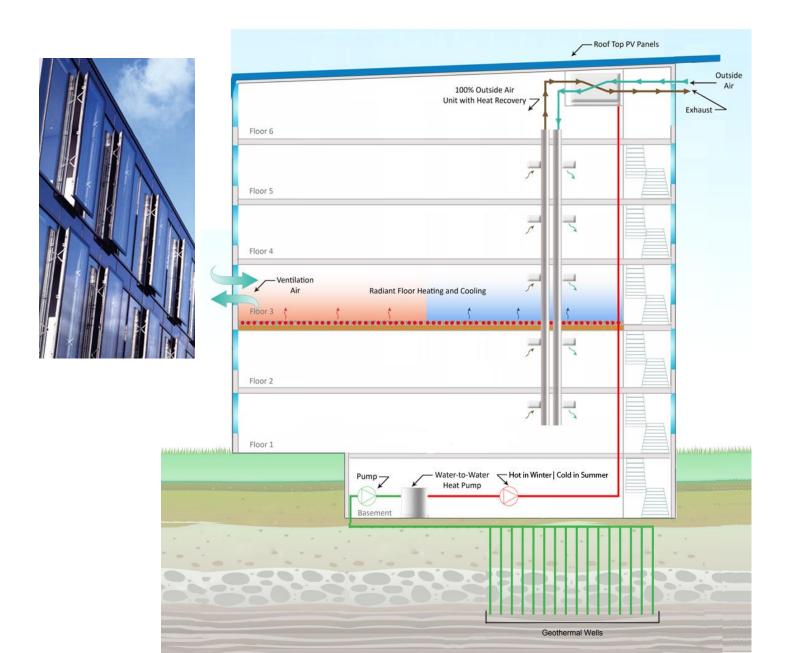

**INTERNAL CAP & TRADE** 




IRRESISTIBLE STAIR






25 YEAR TECHNOLOGY

**50 YEAR SKIN** 



WASTE COMPOST

#### HVAC



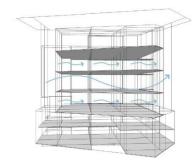


#### NET ZERO WA

### NET ZERO ENERGY

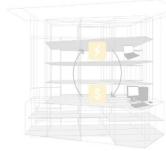


250 YEAR STRUCTURE

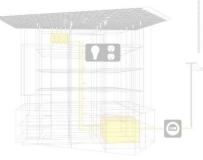



RAINWATER COLLECTION

GREYWATER

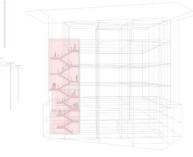



MECHANICAL




NATURAL VENTILATION NIGHT FLUSH & OPERABLE WINDOWS





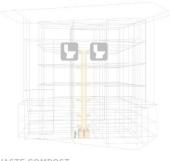

**INTERNAL CAP & TRADE** 



ENERGY

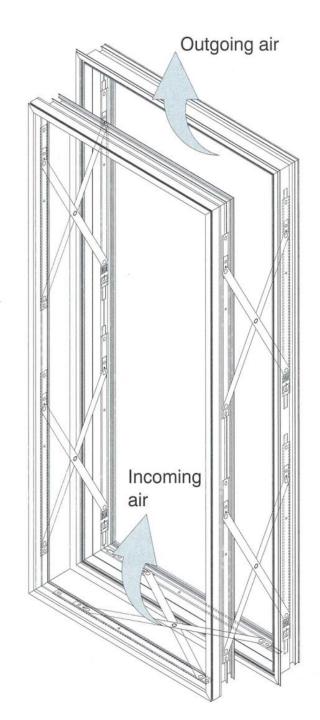




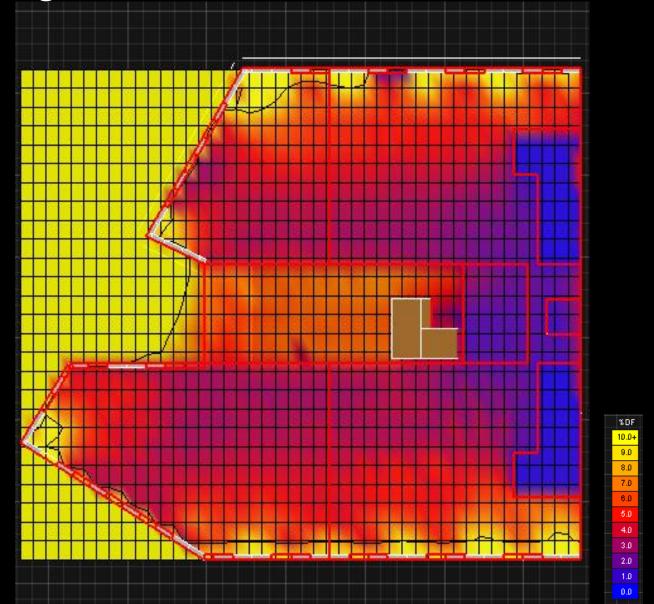

IRRESISTIBLE STAIR



**50 YEAR SKIN** 

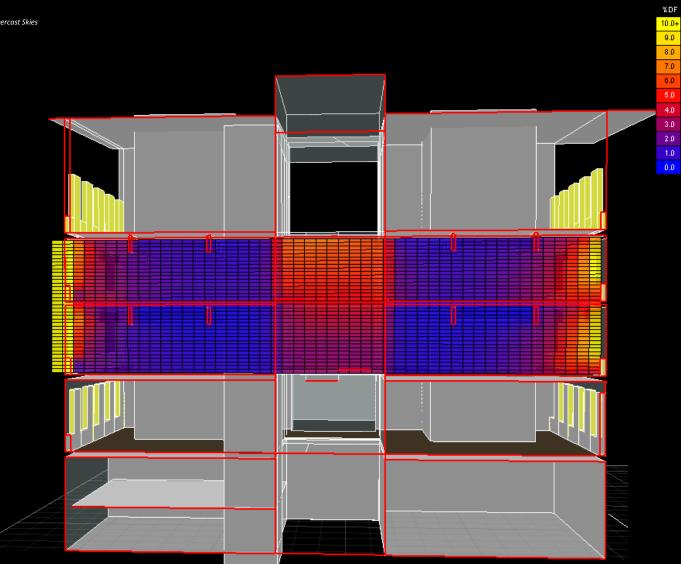


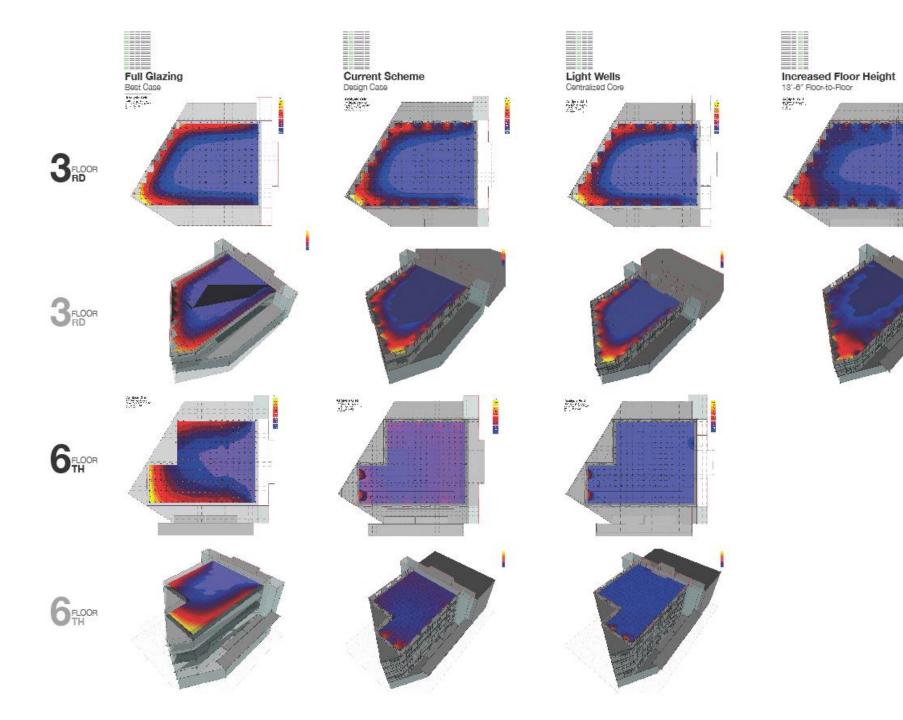

25 YEAR TECHNOLOGY

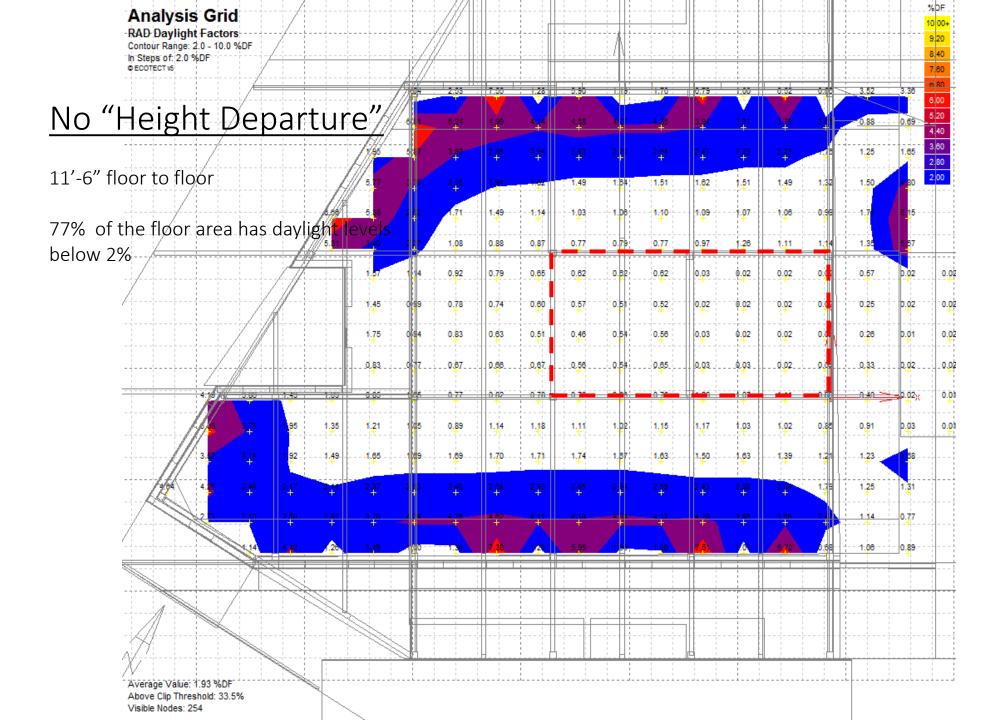


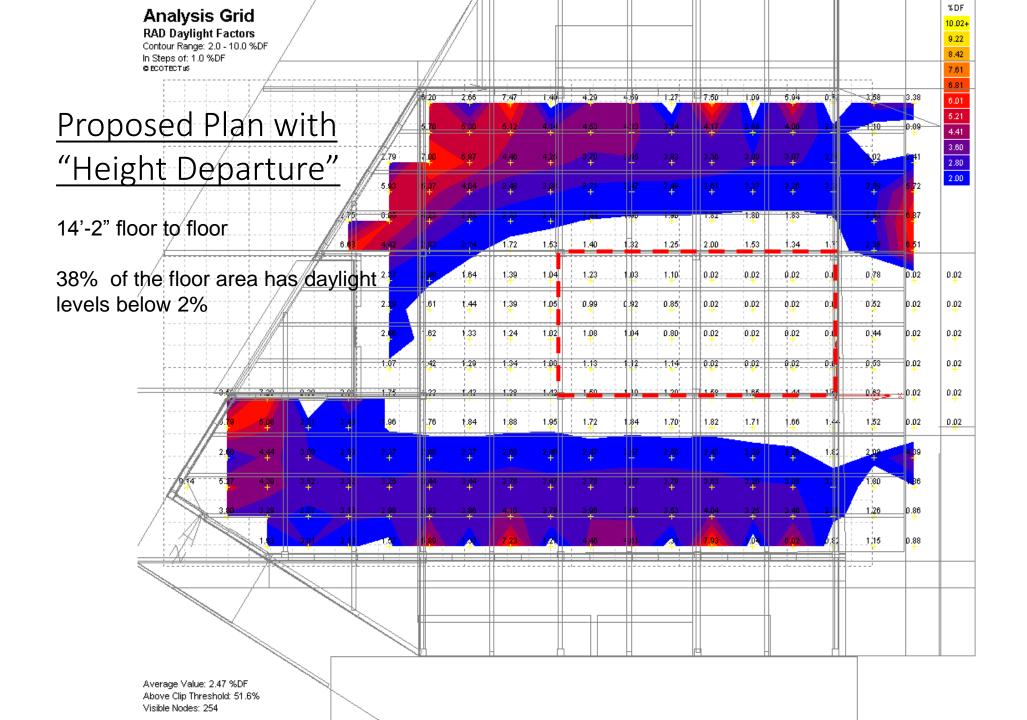

WASTE COMPOST







## **Daylighting Simulation**





#### Daylighting Simulation:

Effect of Atrium – Uniform Overcast Skies

















#### NET ZERO WATER

### NET ZERO ENERGY

## OCCUPANT




250 YEAR STRUCTURE HEAVY TIMBER, CONCRETE & STE

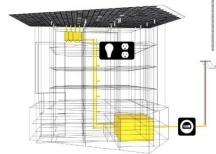


RAINWATER COLLECTION 100% DEMAND MET ON SITE 50,000 GALLON CISTERN

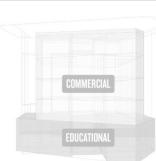


50 YEAR SKIN HIGH PERFORMANCE ENVELO

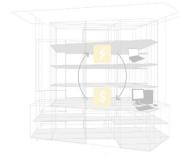



GREYWATER 100% TREATMENT ON SITE EVAPOTRANSPIRATION & INFILTRATION




MECHANICAL GROUND SOURCE HEAT EXCHANGE RADIANT HEATING/COOLING HEAT RECOVERY AIR SYSTEM




NATURAL VENTILATION NIGHT FLUSH & OPERABLE WINDOWS

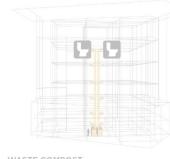


ENERGY 100% RENEWABLE ON SITE GRID USED AS BATTERY

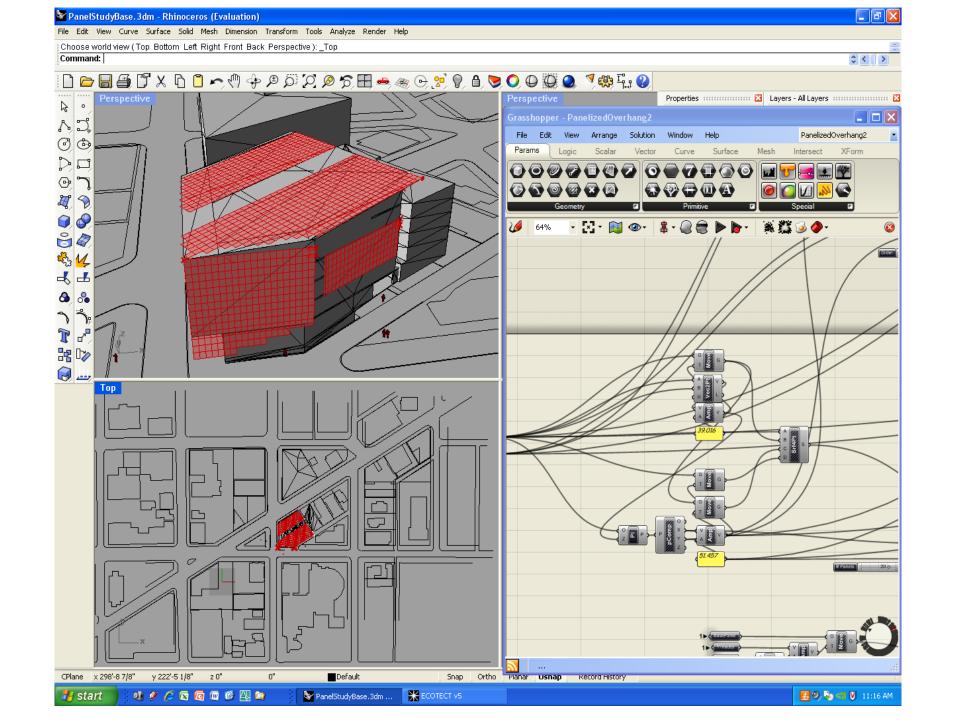


PROGRAM OCCUPANCY PRIVATE USERS ABOVE, PUBLIC FOCU USERS AT GRADE




INTERNAL CAP & TRADE EACH TENANT HAS AN ENERGY BUDGET; UNUSED ENERGY CAN BE TRANSFERRED




IRRESISTIBLE STAIR ELEVATOR ALTERNATIVE, HEALTHIER OCCUPANTS, ENGAGEMENT WITH STREET



25 YEAR TECHNOLOGY ACTIVE SOLAR CONTROL PHOTOVOLTAICS



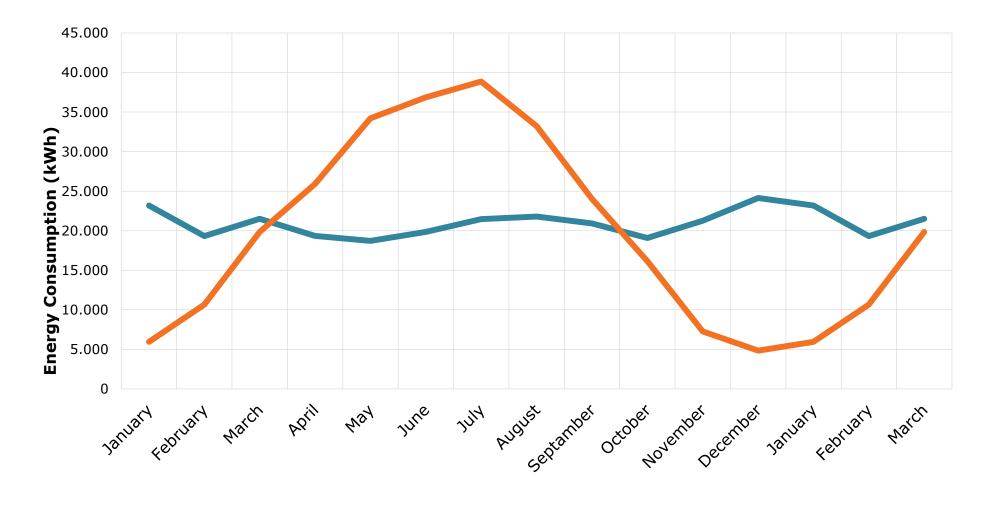
WASTE COMPOST 100% TREATMENT ON SITE



#### August 12, 2009

#### Panel Orientation Panel # Sanyo 205 SunPower 315 Area ROOF SOUTH (5 deg West): 6,272sf = (503 panels) 101,500 kWh/yr (110,500 kWh/yr) ROOF MIDDLE (5 deg West): 611sf = (49 panels) 10,000 kWh/yr 524sf \* 70% = 367sf = 7,000 kWh/yr (42 panels) (Sliding roof section) 1,048sf \* 75% = 785sf = (84 panels) 12,000 kWh/yr ROOF NORTH (5 deg West & 15 deg SE): 4,539sf = (364 panels) 78,500 kWh/yr (85,500 kWh/yr) SOUTH WALL: 2,918sf = (234 panels) 36,000 kWh/yr

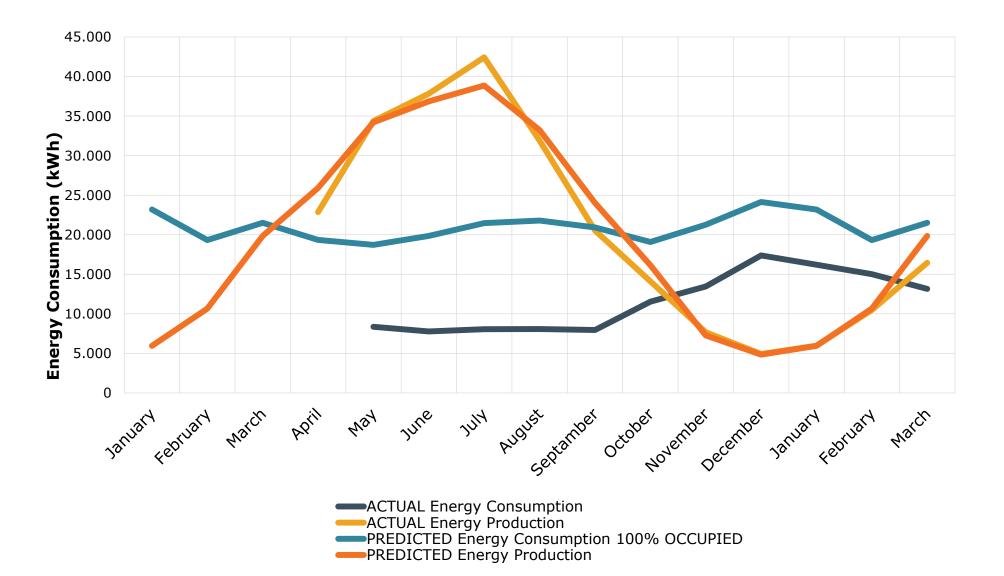


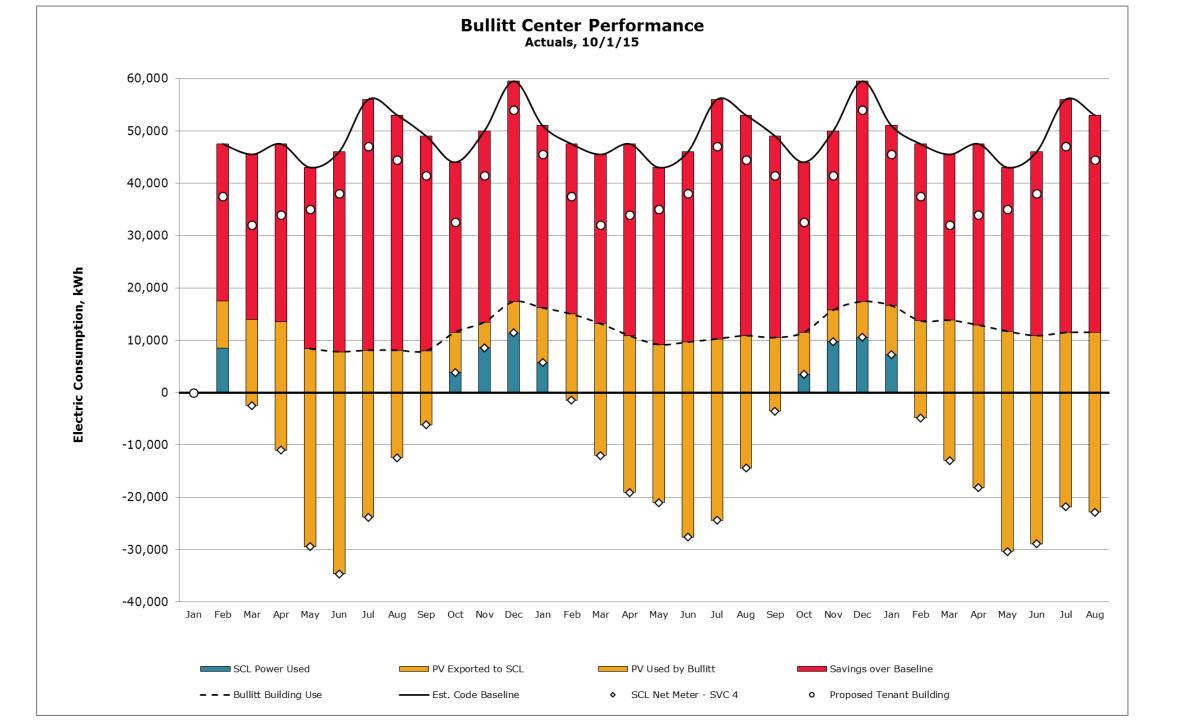

#### Scheme 1a – South Spaced 10.5" (15 deg tilt @ North Roof):





## **Bullitt Center Energy**


Predicted vs. Actual Energy Production & Consumption




PREDICTED Energy Consumption 100% OCCUPIED PREDICTED Energy Production

## **Bullitt Center Energy**

Predicted vs. Actual Energy Production & Consumption



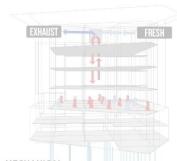




#### NET ZERO

#### **NET ZERO ENER**

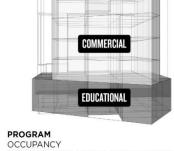




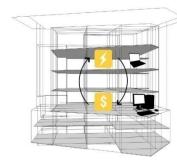

250 YEAR STRUCTURE



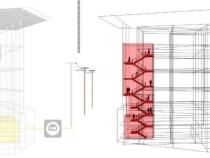
RAINWATER COLLECTION


GREYWATER

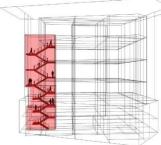



MECHANICAL




NATURAL VENTILATION




PRIVATE USERS ABOVE, PUBLIC FOCUS USERS AT GRADE

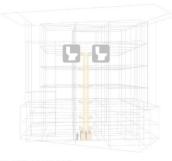


**INTERNAL CAP & TRADE** EACH TENANT HAS AN ENERGY BUDGET; UNUSED ENERGY CAN BE TRANSFERRED



ENERGY

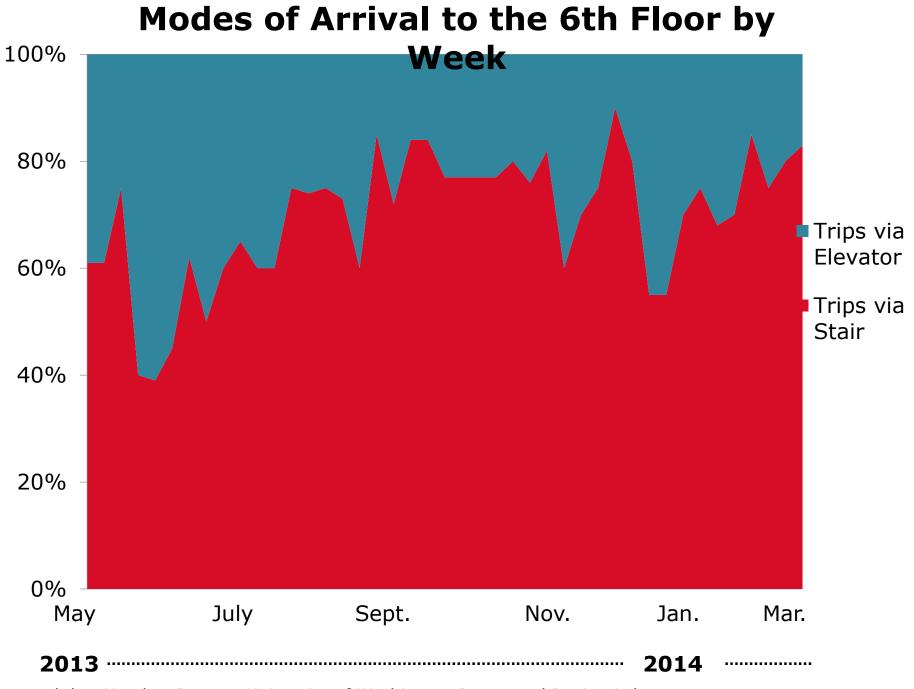



IRRESISTIBLE STAIR ELEVATOR ALTERNATIVE, HEALTHIER OCCUPANTS, ENGAGEMENT WITH STREET



**50 YEAR SKIN** 




25 YEAR TECHNOLOGY



WASTE COMPOST







Research by: Heather Burpee, University of Washington Integrated Design Lab

Asbestos Cadmium **Chlorinated Polyethylene Chlorosulfonated Polyethlene** Chlorofluorocarbons (CFC) Chloroprene (neoprene) Formaldehyde Halogenated Flame Retardants Hydrochlorofluorcarbons (HCFC) Lead Mercury **Petrochemical Fertilizers and Pesticides** Phthalates **Polyvinyl Chloride (PVC)** Creosote, Arsenic Wood treatment

(1.2-BENZENEDICARBOXYLATO(2-))DIOXOTRILEAD ICAS RN: 69011-06-91 1.3-BENZENEDIOL, 2.4.6-TRINITRO-, LEAD SALT ICAS RN: 15245-44-01 CHROMIUM LEAD SILICATE ICAS RN: 11113-70-5 CYCLO-DI-:-OXO(:-PHTHALATO)TRILEAD [CAS RN: 17976-43-1] LEAD ICAS BN: 7439-92-11 LEAD ACETATE [CAS RN: 301-04-2] LEAD ACETATE, TRIHYDRATE [CAS RN: 6080-56-4] LEAD ARSENATE [CAS RN: 7784-40-9] LEAD ARSENITE ICAS RN: 10031-13-71 LEAD AZIDE [CAS RN: 13424-46-9] LEAD CARBONATE ICAS RN: 598-63-01 LEAD CHLORIDE ICAS RN: 7758-95-41 LEAD CHROMATE [CAS RN: 7758-97-6] LEAD CHROMATE MOLYBDATE SULFATE RED [CAS RN: 12656-85-8] LEAD DIOXIDE [CAS RN: 1309-60-0] LEAD FLUOBORATE [CAS RN: 13814-96-5] LEAD FLUORIDE [CAS RN: 7783-46-2] LEAD FLUOROSILICATE ICAS RN: 25808-74-61 LEAD IODIDE [CAS RN: 10101-63-0] LEAD NITRATE, CRYSTAL [CAS RN: 10099-74-8] LEAD OXIDE (LITHARGE) ICAS RN: 1317-36-81 LEAD OXIDE, RED [CAS RN: 1314-41-6] LEAD PHOSPHATE [CAS RN: 7446-27-7] LEAD SILICATE [CAS RN: 11120-22-2] LEAD STEARATE ICAS RN: 7428-48-0 LEAD SUB-ACETATE ICAS RN: 1335-32-61 LEAD SUB-CARBONATE ICAS RN: 1319-46-61 LEAD SULFIDE ICAS RN: 1314-87-01 LEAD SULFOCHROMATE YELLOW (C.I. PIGMENT YELLOW 34) ICAS RN: 134 LEAD SULPHATE ICAS RN: 7446-14-21 LEAD TETRAACETATE ICAS BN: 546-67-8 LEAD THIOCYANATE ICAS RN: 592-87-01 LEAD(II) METHANESULPHONATE ICAS RN: 17570-76-21 LEAD. ISOTOPE OF MASS 214 ICAS RN: 15067-28-41 LEAD-210 ICAS RN: 14255-04-01 TETRAETHYL LEAD ICAS RN: 78-00-21 TETRAMETHYL LEAD ICAS RN: 75-74-11

1.1.1.2-TETRACHLOR-2.2-DIFLUOROETHANE (CFC-112A) ICAS RN: 76-11-9 1.1.1.2-TETRAFLUORO-2.2-DICHLOROETHANE (CFC-114A) ICAS RN: 374-0 1.1.1.3-Tetrachloro-2.2.3.3-tetrafluoropropane (CFC-214cb) ICAS RN: 2268-46 1.1.2.2-TETRACHLORO-1.2-DIFUOROETHANE (CFC-112) ICAS RN: 76-12-01 1.1.2-TRICHLOROTRIFLUOROETHANE (CFC-113) ICAS RN: 76-13-11 1.1.3-Trichloro-1.2.2.3.3-pentafluoropropane (CFC-215) ICAS RN: 1652-81-91 2-Chloro-1.1.1.2.3.3.3-heptafluoropropane (CFC-217ba) ICAS RN: 76-18-61 RROMOCHLORODIELLIOROMETHANE (CEC-12R1) ICAS RN: 353-59-31 BROMOTRIELLIOROMETHANE (CEC-13B1) (CAS BN: 75-83-8) CHLOROHEPTAFI LIOROPROPANE (CEC-217) ICAS RN: 422-86-81 CHLOROPENTAFI LIOROFTHANE (CEC-115) ICAS BN: 76-15-31 CHLODOTDIELLIODOMETHANE (CEC. 13) (CAS DN: 75,72,0) DICHLOBODIELLIOROMETHANE (CEC-12) ICAS RN: 75-71-81 DICHLOROHEXAELLIOROPROPANE (CEC-216) (CAS BN: 661-97-2) DICHLOROTETRAFI LIOROFTHANE (CEC-114) ICAS BN: 76-14-21 HEDTACHI ODOEI I IODODDODANE (CEC. 211) ICAS DN- 422-78-81 HEXACHLORODIELLIOROPROPANE (CEC-212) ICAS BN: 3182-28-11 PENTACHLOROFTHANE (CEC-111) ICAS BN: 354-56-31 PENTACHLOROFTHANE (CEC-111) ICAS BN: 354-56-31 PENTACHI OBOTRIFI LIOROPROPANE (CEC-213 ISOMER) ICAS RN: 134237-PENTACHI OBOTRIFI LIOBOPROPANE (CEC-213 ISOMER) ICAS RN: 134237-PENTACHI OROTRIFI LIOROPROPANE (CEC-213) ICAS RN: 2354-06-51 TETRACHI OROTETRAFI LIOROPROPANE (CEC-214) ICAS BN: 29255-31-01 TRICHLOROFILLIOROMETHANE (CEC-11) ICAS RN: 75-69-41 TRICHLOROPENTAFI LIOROPROPANE (CEC-215) (CAS RN: 4259-43-21 TRICHLOROTRIELLIOROFTHANE (CEC-113 ISOMER) ICAS RN-354-58-51 4-TOLUENESULFONAMIDE FORMALDEHYDE ICAS RN: 1338-51-81 AMMONIA-UREA-FORMALDEHYDE ICAS RN: 27967-29-91 BENZENESULFONIC ACID, 4-HYDROXY-, POLYMER WITH FORMALDEHYDE BUTYLATED POLYOXYMETHYLENE UREA ICAS RN: 68002-19-71 CRESOL FORMALDEHYDE ICAS RN: 68003-26-91 FORMALDEHYDE ICAS BN: 50-00-01 FORMALDEHYDE CYANOHYDRIN ICAS RN: 107-16-41 FORMALDEHYDE, COMPD WITH MONOSODIUM SULFITE (1:1) ICAS RN: 87 FORMALDEHYDE, MELAMINE POLYMER, METHYLATED ICAS RN: 68002-20 FORMALDEHYDE. POLYMER WITH 4-(1.1-DIMETHYLETHYLIPHENOL. METH FORMALDEHYDE, POLYMER WITH PHENOL, POTASSIUM SALT ICAS RN: 12 FORMALDEHYDE. POLYMERS WITH ISOBUTYLENATED PHENOL ICAS RN: ( FORMALDEHYDE, UREA ADDUCT ICAS RN: 68611-64-31 MELAMINE FORMALDEHYDE ICAS RN: 9003-08-11 MELAMINE FORMALDEHYDE ICAS RN: 94645-56-41 MELAMINE-UREA-FORMALDEHYDE (MUF) ICAS RN: 25036-13-91 NAPHTHALENESULFONIC ACID. FORMALDEHYDE POLYMER. AMMONIUM NAPHTHALENESULFONIC ACID. FORMALDEHYDE POLYMER, CALCIUM SA NAPHTHALENESULFONIC ACID. POLYMER WITH FORMALDEHYDE. POTAS O-CRESOL FORMALDEHYDE EPOXY ICAS RN: 29690-82-21

PENTACHI OBOTRIFI LIOROPROPANE (CEC-213 ISOMER) ICAS RN: 134237-PENTACHLOROTRIELLIOROPROPANE (CEC-213) (CAS RN: 2354-06-5) TETRACHI OROTETRAFI LIOROPROPANE (CEC-214) ICAS RN: 29255-31-01 TRICHLOROFI LIOROMETHANE (CEC-11) ICAS BN: 75-69-41 TRICHLOROPENTAELUOROPROPANE (CEC-215) (CAS DN: 4259-43-21 TRICHLOROTRIELLIOROFTHANE (CEC-113 ISOMER) ICAS RN-354-58-51 4-TOLUENESULFONAMIDE FORMALDEHYDE ICAS RN: 1338-51-81 AMMONIA-UREA-FORMALDEHYDE ICAS RN: 27967-29-91 BENZENESULFONIC ACID. 4-HYDROXY-. POLYMER WITH FORMALDEHYDE BUTYLATED POLYOXYMETHYLENE UREA ICAS RN: 68002-19-71 CRESOL FORMALDEHYDE ICAS RN: 68003-26-91 FORMALDEHYDE ICAS RN: 50-00-01 FORMALDEHYDE CYANOHYDRIN ICAS RN: 107-16-41 FORMALDEHYDE, COMPD WITH MONOSODIUM SULFITE (1:1) ICAS RN: 87 FORMALDEHYDE, MELAMINE POLYMER, METHYLATED ICAS RN: 68002-20 FORMALDEHYDE, POLYMER WITH 4-(1.1-DIMETHYLETHYLPHENOL, METH FORMALDEHYDE, POLYMER WITH PHENOL, POTASSIUM SALT ICAS RN: 12 FORMALDEHYDE, POLYMERS WITH ISOBUTYLENATED PHENOL ICAS RN: ( FORMALDEHYDE, UREA ADDUCT ICAS RN: 68611-64-31 MELAMINE FORMALDEHYDE ICAS RN: 9003-08-11 MELAMINE FORMALDEHYDE ICAS RN: 94645-56-41 MELAMINE-UBE EHYDE (MUF) ICAS RN: 250 NAPHTHAL FORMAL DEHYDE ORMALDEHYD NAPHTH NAPH SULFONIC O YMER WIT ALDEHYDE O-CR DRMALDEHYD ICAS RN: 32-21 LPHENOL FORM HYDE ICA 5085-50-11 P-TEP PARAFORMALDEHYDE ICAS 525-89-41 PHENOL FORMALDEHYDE £ 9003-3 PHENOL FORMALDEN **JER HEXAN** PHENOL-RESORC ALDEHYDE R RESORCINOL FO S BN: 24 POTASSIUM SA

ROSIN, FORMALDEHYDE, FO ACID P CIDP POTASSIUM SALT ROSIN, FORMALDEHYDE, FUN TE ICA SODILIM POLYNAPTHALENESU 084-08-41 TOLUENESULFONAMIDE FORM YDE R : 25035-71-61 DED PHENOL-MEU FORM YDE RESIN ICAS P LDEHYDE ICAS 1-05-61 FORMAL DEF S RN- 25 26139-75-3 NDATE ICAS RN: 2420-98-61

URE

URE/

LIREA

XYI ENE

CADMILIM

CADMILIM 2-ETEN CADMILIM ACETATE ICAS RN: 543-90-81 CADMILIM ACETATE DIHYDRATE ICAS RN: 5743-04-41 CADMILIM BDOMIDE ICAS DN-7780-49-61 CADMILIM CARBONATE ICAS BN: 513-78-01 CADMILIM CHI ORIDE 2.5 HYDRATE ICAS RN: 7790-78-51 CADMILIM CHI ORIDE, ANHYDROLIS ICAS RN: 10108-64-21 CADMILIM CYANIDE ICAS BN: 542-83-61

CADMIL

CADMILIM SUI FATE HYDRATE ICAS BN: 7790-84-31 CADMIUM SULFIDE ICAS RN: 1306-23-6 ALPHA-HEXABROMOCYCLODODECANE (a-HBCD) [CAS RN: 134237-50-6]

BIS(2-ETHYL-1-HEXYL)TETRABROMOPHTHALATE (TBPH) ICAS RN: 26040-5 BIS(2-HYDROXYETHYL ETHER) (TBBPA)I ICAS RN: 4162-45-21 FTHYLENE BIS/TETRABBOMOPHTHALIMIDE) ICAS BN: 32588-76-40 1.2-BENZENEDICARBOXYLIC ACID. 3.4.5.6-TETRABROMO-, MIXED ESTERS 1.2-BIS(2.4.6-TRIBROMOPHENOXY)ETHANE (BTBPE)) ICAS RN: 37853-59-11 2.2'.3.3'.4.5'.6-HEPTABROMODIPHENYL ETHER (BDE-175) ICAS RN: 446255 2.2'.3.4'.5.6'-HEPTABROMODIPHENYL ETHER (BDE-183) ICAS RN: 189084-6 2.2'.3.4.4'.5'.6-HEPTABROMODIPHENYL ETHER (OCTABDE BDE-183) ICAS F 2.2'.3.4.4'-PENTABROMODIPHENYL ETHER (BDE 85) ICAS RN: 182346-21-0' 2 2' 4 4' 5 5'-HEXABROMODIPHENYL FTHER (RDF-153) ICAS RN- 68631-49-2.2'.4.4'.5.6'-HEXABROMODIPHENYL ETHER (BDE-154) ICAS RN: 207122-15 2.2'.4.4'.5-PENTABROMODIPHENYL ETHER (BDE-99) ICAS RN: 60348-60-91 2.2'.4.4'.6-PENTABROMODIPHENYL ETHER (BDE-100) ICAS RN: 189084-64-2.2',4.4'-TETRABROMODIPHENYL ETHER (BDE-47) ICAS RN: 5436-43-11 2.2'-I(1-METHYLETHYLIDENE)BISI(2.6-DIBROMO-4.1-PHENYLENE) ICAS RN 2.3-DIBROMOPROPYL-2.4.6-TRIBROMOPHENYL ETHER (DPTE) ICAS RN: 3 2.3-DIRROMOPROPYL-2.4.6-TRIRROMOPHENYL FTHER (DPTE) ICAS RN-3. 2.4.4'-TRIBROMODIPHENYL ETHER (BDE-28) (CAS BN- 41218-75-8) 2.4.5.21.41 SHEXABROMORIPHENYL ICAS RN-59080-40-91 2.4.5.21.41 51-HEXABROMORIPHENYL (CAS RN: 59080-40-9) 2.4.6-TRIBROMOPHENOL ICAS RN: 118-79-61 2.4.6-TRIRROMOPHENYL TERMINATED CARRONATE OLIGOMER ICAS RN-2-ETHYLHEXYL-2.3.4.5-TETRABROMOBENZOATE (TBR) ICAS RN-183658-2

2-HYDROXY-PROPYL-2-/2-HYDROXY-FTHOXY-FTHYL-TRP ICAS BN: 2056/ RENZENE ETHENYL - HOMOPOLYMER BROMINATED ICAS BN: 88497-56-1 BETA-HEXABROMOCYCLODODECANE (8-HBCD) ICAS RN: 134237-51-71

DICHLOROPENTAFLUOROPROPANE (HCFC-225CB) ICAS RN: 507-55-11 DICHLOROTETRAFLUOROPROPANE (HCFC-234) ICAS RN: 425-94-51 Dichlorotetrafluoropropane (HCFC-234) ICAS RN: 127564-83-41 DICHLOBOTRIELLIOBOFTHANE (HCEC-123) ICAS RN: 306-83-21 DICHLOROTRIFLUOROPROPANE (HCFC-243) ICAS RN: 460-69-51 Dichlorotrifluoropropane (HCFC-243) ICAS RN: 116890-51-81 HEXACHLOROFLUOROPROPANE (HCFC-221) ICAS RN: 422-26-41 MONOCHLORODIFLUOROETHANE (HCFC-142B) ICAS RN: 75-68-31 MONOCHLORODIFLUOROPROPANE (HCFC-262) ICAS RN: 421-02-031 MONOCHLOROFLUOROMETHANE (HCFC-31) ICAS RN: 593-70-41 MONOCHLOROFLUOROPROPANE (HCFC-271) ICAS RN: 430-55-71 MONOCHLOROHEXAFLUOROPROPANE (HCFC-226) ICAS RN: 431-87-81 MONOCHLOROPENTAFLUOROPROPANE (HCFC-235) ICAS RN: 460-92-41 MONOCHLOBOTETRAFI, LIOROFTHANE (HCEC-124) ICAS, BN: 2837-89-01 MONOCHLOROTETRAFLUOROPROPANE (HCFC-244) ICAS RN: 134190-50-4 MONOCHLOROTETRAFLUOROPROPANE (HCFC-251) ICAS RN: 421-41-01 MONOCHLOROTRIFLUOROETHANE (HCFC-133A) ICAS RN: 75-88-71 MONOCHLOROTRIFLUOROPROPANE (HCFC-253B) ICAS RN: 460-35-51 PENTACHLORODIFLUOROPROPANE (HCFC-222) ICAS RN: 422-49-11 PENTACHLOROFLUOROPROPANE (HCFC-231) ICAS RN: 421-94-31 TETRACHLORODIFLUOROPROPANE (HCFC-232) ICAS RN: 460-89-91 TETRACHLOS E (HCFC-121) ICAS RN: 354-14-31 TETRACH HCFC-241) ICAS RN: 666-27-31

DICHLOROPENTAFLUOROPROPANE (HCFC-225CA) ICAS RN: 422-56-0

Tetrachk rooane (H ICAS RN: 134190-49-11 TETRA OTRIFLUOROF (HCFC-223) ICAS RN: 422-52-61 FLUOROETHANE TRICH -122) ICAS RN-354-21-21 TRICH DIFLUOROPROPAN C-242) ICAS RN: 460-63-91 Trichlorodifluoropropane (HCFC) AS RN: 127564-90-31 TRICHLOROFLUOROETHANE, 131) ICAS RN: 359-28-4 Trichlorofluoropropane (HCFG AS RN: 134190-51-51 TRICHLOBOTETRAFLUOR NE (HCEC-224) ICAS RN: 422-54-81 TRICHLOBOTRIELLIOB E (HCEC-233) ICAS RN: 7125-84-01 CHI ORIDE ICAS RN: 123-88-61 2-METHOXYETHYL DIMERCIJEV DIC CAS BN: 10112-01-11 DIMERCURY D DIMETHYL ETHYL MI ETHM Y ICAS RN- 627-44-11

FULN

HYD

MED

OXIDE ICAS RN: 1335-31-51 ICAS RN-593-74-81 PHOSPHATE ICAS RN: 2235-25-81 -86-41 1184-57-21

MERCURIC BROMIDE ICAS BN: 7789-47-11 MERCLIRIC CHI ORIDE (HGCI 2) ICAS RN: 7487-94-71 MERCURIC CYANIDE ICAS RN: 592-04-11 MERCURIC IODIDE, RED ICAS RN: 7774-29-01 MEDCLIDIC NITRATE ICAS DN- 10045-04-01 MERCURIC OXIDE ICAS RN: 21908-53-21 MERCHBIC SHI FATE ICAS BN: 7783-35-91 MERCURIC SUI FIDE ICAS BN: 1344-48-51

YDRA ICAS RN: 7782-86-71 MONG MERC ICAS RN 0.62.61 ATE ICAS BN TED ICA

METHOXYETHYLMERCURIC ACETATE ICAS RN: 151-38-21 METHYL MERCURY (MEHG) ICAS RN: 22967-92-61 METHYL MERCURY CHLORIDE ICAS BN: 115-09-3 METHYLMERCURIC DICYANAMIDE ICAS RN: 502-39-61 PHENYL MERCURIC PROPIONATE ICAS RN: 103-27-51 PHENYLMERCURIC ACETATE ICAS RN: 62-38-41 PHENYLMERCURIC ACETATE ICAS RN: 62-38-41 PHENYLMERCURIC BORATE ICAS RN: 31224-71-21 PHENYLMERCURIC BORATE ICAS RN: 31224-71-21 BUTYL BENZYL PHTHALATE (BBP) ICAS RN: 85-68-71 DI/2-ETHYLHEXYL)PHTHALATE (DEHP) (CAS RN: 117-81-7] DI-N-HEXYLPHTHALATE (DNHP) ICAS RN: 84-75-31 DI-N-OCTYL PHTHALATE (DNOP) ICAS RN: 117-84-01 DI-N-PENTYL PHTHALATE (DNPP) ICAS RN: 131-18-01 DIBUTYL PHTHALATE (DBP) ICAS RN: 84-74-21 DIISOBLITYL PHTHALATE (DIRP) ICAS RN: 84-69-51 DIISODECYL PHTHALATE (DIDP) ICAS RN: 68515-49-11 DIISODECYL PHTHALATE (DIDP) ICAS RN: 26761-40-01 DIISOHEPTYL PHTHALATE ICAS RN: 71888-89-61 DIISONONYL PHTHALATE (DINP) ICAS RN: 68515-48-01 DIISONONYL PHTHALATE (DINP) ICAS RN: 28553-12-01 COKE OVEN EMISSIONS ICAS RN: 8007-45-21 CREOSOTE ICAS RN: 8001-58-91 CREOSOTE OIL ICAS RN: 61789-28-41 CREOSOTE OIL ICAS RN: 70321-79-81 CREOSOTE OIL. ACENAPHTHENE FRACTION ICAS RN: 90640-84-91 CREOSOTE OIL. ACENAPHTHENE FRACTION. ACENAPHTHENE-FREE ICAS CREOSOTE OIL: LOW-ROLLING DISTILL ATE ICAS RN: 70321-80-11 EXTRACT RESIDUES (COAL) CREOSOTE OIL ACID (CAS RN: 122384-77-4) RESIDUES (COAL TAR) CREOSOTE OIL DISTN. ICAS RN-92061-93-31

MERCHRIC ACETATE ICAS RN: 1600-27-71 MERCURIC BROMIDE ICAS RN: 7789-47-11 MERCLIRIC CHI ORIDE (HGC) 2) ICAS RN: 7487-94 MERCURIC CYANIDE ICAS RN: 592-04-11 MERCURIC IODIDE, RED ICAS RN: 7774-29-01 MERCURIC NITRATE ICAS RN: 10045-94-01 MEDCLIDIC OVIDE ICAS DN: 91008-59-91 MERCHRIC SHI FATE ICAS RN- 7783-35-91 MERCURIC SUI FIDE ICAS BN: 1344-48-51 MERCUROUS NITRATE ICAS RN: 10415-75-51 MERCUROUS NITRATE, MONOHYDRATE ICAS RN MERCHROLIS OXIDE ICAS BN: 15829-53-51 MERCURY THIOCYANATE ICAS RN: 592-85-81 MERCURY, AMMONIATED ICAS RN: 10124-48-81 MERCURY, ELEMENTAL ICAS RN: 7439-97-61 METHOXYETHYLMERCURIC ACETATE ICAS RN: 1 METHYL MERCURY (MEHG) ICAS BN: 22987-92-8 METHYL MERCURY CHLORIDE ICAS RN: 115-09-METHYLMERCURIC DICYANAMIDE ICAS RN: 502-PHENYL MERCURIC PROPIONATE ICAS RN: 103-: PHENYLMERCURIC ACETATE ICAS RN: 62-38-41 PHENYLMERCURIC ACETATE ICAS RN: 62-38-41 PHENYLMERCURIC BORATE ICAS RN: 31224-71-PHENYLMERCURIC BORATE ICAS RN: 31224-71-BUTYL BENZYL PHTHALATE (BBP) ICAS RN: 85-6 DI/2-ETHYLHEXYL)PHTHALATE (DEHP) ICAS RN: 1 DI-N-HEXYL PHTHALATE (DNHP) ICAS BN: 84-75-3 DI-N-OCTYL PHTHALATE (DNOP) ICAS RN: 117-84 DI-N-PENTYL PHTHALATE (DNPP) ICAS RN: 131-1 DIBUTYL PHTHALATE (DBP) ICAS RN: 84-74-21 DIISOBUTYL PHTHALATE (DIBP) ICAS RN: 84-69-5 DIISODECYL PHTHALATE (DIDP) ICAS RN: 68515-DIISODECYL PHTHALATE (DIDP) ICAS RN: 26761-DIISOHEPTYL PHTHALATE ICAS BN: 71888-89-61 DIISONONYL PHTHALATE (DINP) ICAS RN: 68515-DIISONONYL PHTHALATE (DINP) ICAS RN: 28553-COKE OVEN EMISSIONS ICAS RN: 8007-45-21 CREOSOTE ICAS RN: 8001-58-91 CREOSOTE OIL ICAS RN: 61789-28-41 CREOSOTE OIL ICAS RN: 70321-79-81 CREOSOTE OIL, ACENAPHTHENE FRACTION ICA CREOSOTE OIL. ACENAPHTHENE FRACTION. AC CREOSOTE OIL: LOW-BOILING DISTILLATE ICAST EXTRACT RESIDUES (COAL) CREOSOTE OIL ACIL RESIDUES (COAL TAR) CREOSOTE OIL DISTN. IC. WOOD CREOSOTE ICAS RN- 8021-39-41 AMMONIUM COPPER ABSENATE ICAS BN: 16102 ARSENAZO III ICAS RN: 1668-00-41 ARSENIC ICAS RN: 7740-38-21 ARSENIC (TRIVALENT) ICAS RN: 22569-72-81 ARSENIC ACID ICAS RN: 7778-39-4 ARSENIC DISLIFEIDE ICAS RN- 1303-32-81 ARSENIC III ICAS RN: 22541-54-41 ABSENIC PENTOVIDE ICAS DN: 1909-98-91 ARSENIC TRICHLORIDE ICAS RN: 7784-34-11 ARSENIC TRIOXIDE ICAS RN: 1327-53-31 ABSENIC TRISULEIDE (CAS RN: 1303-33-9) ARSENIC VICAS RN: 17428-41-01 CALCILIM ARSENATE PASH904 2CALICAS BN: 71 CALCILIM ARSENITE ICAS RN: 52740-16-61 CODDED ADSENATE ICAS DN: 10102-81-41 CUPRIC ACETOARSENITE ICAS RN: 12002-03-81 GALLIUM ARSENIDE ICAS RN: 1303-00-01 IMAZAPYR (ARSENAL) ICAS RN: 81334-34-11 LEAD ARSENATE ICAS RN: 7784-40-91 LEAD ARSENITE ICAS RN: 10031-13-71 MAGNESIUM ARSENATE ICAS RN: 10103-50-11 POTASSIUM ARSENATE ICAS RN: 7784-41-01 POTASSIUM ARSENITE (ASH3O4,XK) ICAS RN: 10 SODIUM ARSENATE ICAS RN: 13464-38-51 SODIUM ARSENATE (ASH3O4,XNA) ICAS RN: 7631 SODILIM ARSENITE ICAS RN: 7784-46-51 TRIETHYL ARSENATE ICAS RN: 15606-95-81 ARSENIC [7740-38-2] ASBESTOS [1332-21-4] CADMIUM [7440-43-9] CHLORINATED POLYETHYLENE (CPE) (63231-66-3 CHLORINATED POLYETHYLENE (CPE, TYRIN) (64) CHLORINATED POLYVINYL CHLORIDE (CPVC) 168 CHLOROSULFONATED POLYETHYLENE (HYPALO CREOSOTE [8001-58-9] FORMALDEHYDE [50-00-0] LEAD [7439-92-1] MERCURY ELEMENTAL 17439-97-61 NEOPRENE [9010-98-4]



#### MATERIAL SAFETY DATA SHEET BEADEX® Lite All Purpose Drywall Joint Compound

MSDS #61-360-025 Page 2 of 9

|                                                                                                                                       | i for detailed information.                                                                                                                                                                                |                                                                                                                         |                                                                                                                                                      |                                                                                                                             | Losicalogy                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| MATERIA                                                                                                                               | L                                                                                                                                                                                                          | IARC                                                                                                                    | NTP                                                                                                                                                  | ACGIH                                                                                                                       | CAL- 65                                                                                                         |
| Vievi 2                                                                                                                               | Cetate Manemer                                                                                                                                                                                             | 23                                                                                                                      | Not Listed                                                                                                                                           | A3                                                                                                                          | Not Listed                                                                                                      |
| Anotalo                                                                                                                               |                                                                                                                                                                                                            | 25                                                                                                                      | 2                                                                                                                                                    | A5                                                                                                                          | Ligted                                                                                                          |
| Formale                                                                                                                               |                                                                                                                                                                                                            | 1                                                                                                                       | 2                                                                                                                                                    | 9.2                                                                                                                         | Listed                                                                                                          |
| Coystal                                                                                                                               | lline allice                                                                                                                                                                                               | 1                                                                                                                       | 1                                                                                                                                                    | A2                                                                                                                          | Listed                                                                                                          |
| ARC - Lite                                                                                                                            | anational Agency for Res<br>B — Possibly card nogenic                                                                                                                                                      | earch on Cancer, 1-<br>to humane; 5 - Not                                                                               | Cardinogenio to humans<br>dassifiable as a cardinog                                                                                                  | s; 2A – Probably<br>gen; 4 – Probab                                                                                         | carolnogenic to<br>ly nat a caroinogen                                                                          |
| NTP – Nat<br>Known to h                                                                                                               | lonal Toxicology Program<br>as carcinogen; 2- Anticipa                                                                                                                                                     | (Hoalth and Humer<br>tad to be carcinogar                                                                               | Services CepL, Public H<br>18                                                                                                                        | tealth Service, (                                                                                                           | H/MEHS): 1-                                                                                                     |
|                                                                                                                                       | american Conference of G<br>Juman carcitogen, A5 –<br>arcinogen                                                                                                                                            |                                                                                                                         |                                                                                                                                                      |                                                                                                                             |                                                                                                                 |
| CAL-65 - 0                                                                                                                            | California Proposition 65                                                                                                                                                                                  | *Chemicals known                                                                                                        | the State of California                                                                                                                              | to Cause Cent                                                                                                               |                                                                                                                 |
| crystalline                                                                                                                           | crystalline silica: IARC: G<br>silica given represents lot<br>an measured in this produ                                                                                                                    | al quarte and not the                                                                                                   | NTP Krown human can<br>a reapwable fraction. The                                                                                                     | cinogen. The we<br>Weight percent                                                                                           | sight percent of<br>of respirable allies                                                                        |
| Food and I<br>(GRAS).                                                                                                                 | Crug Administration [CFR                                                                                                                                                                                   | Tille 21, v.3, sec 18                                                                                                   | 4.1409] - Ground limest                                                                                                                              | one is Generally                                                                                                            | Recognized as Sefe                                                                                              |
|                                                                                                                                       | COMPO                                                                                                                                                                                                      |                                                                                                                         | CTION 3<br>MATION ON INGRE                                                                                                                           | DIENTS                                                                                                                      |                                                                                                                 |
| KATERIA                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                         | MATION ON INGRE                                                                                                                                      | DIENTS                                                                                                                      | CAS#                                                                                                            |
|                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                         | WATION ON INGRE                                                                                                                                      |                                                                                                                             | CAS #                                                                                                           |
| later                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                         | WT%                                                                                                                                                  |                                                                                                                             | 32-18-5                                                                                                         |
| Nater<br>Limeston                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                         | WATION ON INGRE                                                                                                                                      | 77                                                                                                                          | 32-18-5<br>17-6u-2                                                                                              |
| later<br>Limeston<br>Sxpinded                                                                                                         | E<br>Perlika                                                                                                                                                                                               |                                                                                                                         | MATION ON INGRE<br>WT%<br>~40<br>~40<br>~40<br>~5                                                                                                    | 77<br>14<br>93                                                                                                              | 32-18~5<br>17-60-2<br>760-70-3                                                                                  |
| Noter<br>Limeston<br>Expanded<br>Sepiolit                                                                                             | E<br>Peylika<br>P                                                                                                                                                                                          |                                                                                                                         | WATION ON INGRE                                                                                                                                      | 77<br>14<br>93<br>630                                                                                                       | 32-18-5<br>17-60-3<br>760-70-3<br>900-47-3                                                                      |
| Mater<br>Limeston<br>Exploded<br>Sepiolit<br>Attaputg<br>Viryl Ac                                                                     | e<br>Perlika<br>e<br>ita<br>esace Polymer                                                                                                                                                                  | DSITION, INFOR                                                                                                          | MATION ON INGRE                                                                                                                                      | 777<br>14<br>937<br>63.<br>22                                                                                               | 32-18~5<br>17-60-2<br>760-70-3                                                                                  |
| Anter<br>Simeston<br>Sepiolit<br>Stapulit<br>Stapulit<br>Sinyl Ac<br>De Sthyl                                                         | E<br>Perlita<br>e<br>ita<br>state Polymer<br>ene Vinyl Acstste F                                                                                                                                           | DSITION, INFOR                                                                                                          |                                                                                                                                                      | 77<br>14<br>93)<br>63)<br>22<br>93                                                                                          | 32-18-5<br>17-60-3<br>760-70-3<br>900-67-3<br>174-11-7                                                          |
| Anter<br>Simeston<br>Sepiolit<br>Stapulit<br>Stapulit<br>Sinyl Ac<br>De Sthyl                                                         | e<br>Perlika<br>e<br>ita<br>esace Polymer                                                                                                                                                                  | DSITION, INFOR                                                                                                          |                                                                                                                                                      |                                                                                                                             | 32-18-5<br>17-61-2<br>760-70-3<br>900-65-3<br>174-11-7<br>03-20-7                                               |
| Water<br>Limeston<br>Expanded<br>Sepiolit<br>Attapung<br>Viryl Ac<br>Or Ethyl<br>Crystall<br>Allingredle                              | E<br>Perlita<br>e<br>ita<br>state Polymer<br>ene Vinyl Acstste F                                                                                                                                           | olytes                                                                                                                  | wt%<br>>40<br>40<br>40<br>40<br>40<br>5<br>5<br>5<br>42<br>rviconmental Protection J                                                                 | 777<br>13<br>93<br>63<br>27<br>94<br>29<br>19<br>99<br>99<br>99<br>99<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 32-18-5<br>17-61-2<br>761-70-3<br>900-65-3<br>174-11-7<br>02-20-7<br>957-78-8<br>908-50-7                       |
| Water<br>Limeston<br>Expanded<br>Sepiolit<br>Attapuly<br>Vinyl Ac<br>Or Bthyl<br>Crystail<br>Allingredie<br>Act Chemin                | F<br>Perlika<br>e<br>ita<br>stace Polymer<br>ene Vinyl Acstster F<br>ine Silice<br>Mis Silice                                                                                                              | olytes<br>inded in the U.S. En<br>ind the Canadian Do                                                                   | wt%<br>>40<br>40<br>40<br>40<br>40<br>5<br>5<br>42<br>rviconmental Protection /<br>sneedic Substances List                                           | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                          | 32-18-5<br>17-61-2<br>761-70-3<br>900-65-3<br>174-11-7<br>02-20-7<br>957-78-8<br>908-50-7                       |
| Mater<br>Limeston<br>Expanded<br>Sepiolit<br>Attapuly<br>Vinyl Ac<br>Or Bthyl<br>Crystall<br>Allingredie<br>Act Chemin                | F<br>Perlika<br>e<br>tas<br>stace Polymer<br>ene Vinyl Acstsce P<br>ine Silice<br>mis Silice<br>mis Silice                                                                                                 | Polyses<br>Inded in the U.S. En<br>ind the Canadian Do<br>onle Iotal quartz and                                         | WT%<br>-40<br>-40<br>-40<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5                                                                 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                          | 32-18-5<br>17-61-2<br>761-70-3<br>900-65-3<br>174-11-7<br>02-20-7<br>957-78-8<br>908-50-7                       |
| Matter<br>Limeston<br>Expanded<br>Sepiolit<br>Attapuly<br>Vinyl Ac<br>Or Bthyl<br>Crystail<br>Allingredie<br>Act Chemi                | F<br>Perlika<br>e<br>tas<br>stace Polymer<br>ene Vinyl Acstsce P<br>ine Silice<br>mis Silice<br>mis Silice                                                                                                 | olytes<br>inded in the U.S. En<br>ind the Canadian Do<br>inis ional quarts and<br>SE                                    | wt%<br>>40<br>40<br>40<br>40<br>40<br>5<br>5<br>42<br>rviconmental Protection /<br>sneedic Substances List                                           | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                          | 32-18-5<br>17-61-2<br>761-70-3<br>900-65-3<br>174-11-7<br>02-20-7<br>957-78-8<br>908-50-7                       |
| Water<br>Limeston<br>Bopanded<br>Sepiolit<br>Attapu (g<br>Viryl Ac<br>Or Bthyl<br>Crystall<br>AttChenged<br>Act Chenged<br>The weight | F<br>Perlika<br>e<br>tas<br>stace Polymer<br>ene Vinyl Acstsce P<br>ine Silice<br>mis Silice<br>mis Silice                                                                                                 | olytes<br>inded in the U.S. En<br>ind the Canadian Do<br>inis ional quarts and<br>SE                                    | wr%<br>>40<br>40<br>40<br>40<br>40<br>5<br>5<br>42<br>rviconmental Protection /<br>sneethic Substances List<br>not the respirable fractio<br>CTION 4 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                          | 32-18-5<br>17-61-2<br>761-70-3<br>900-65-3<br>174-11-7<br>02-20-7<br>957-78-8<br>908-50-7                       |
| sepiolit<br>Attapung<br>Viryl Ac<br>Or Sthyl<br>Crystail<br>Allingredie<br>Act Chemk<br>The weight                                    | Perfita<br>e<br>ta<br>stace Polymer<br>ene Vinyt Acetsee P<br>mie sittice<br>mie sittice<br>mie sittice<br>sal Substance Inventory a<br>percent for silica represe<br>PROCEDURES<br>Remove to frash alt. L | Solytes<br>Judged in the U.S. En<br>Ind the Canadian Do<br>Inis Ional quartz and<br>FIRST Alia<br>eases the area of exc | wr%<br>>40<br>40<br>40<br>40<br>40<br>5<br>5<br>42<br>rviconmental Protection /<br>sneethic Substances List<br>not the respirable fractio<br>CTION 4 | Agency's Toxic S<br>(DSL).                                                                                                  | 32-13-5<br>17-63-2<br>763-74-3<br>903-65-3<br>174-11-7<br>82-20-7<br>937-74-8<br>909-50-7<br>Substances Control |

#### FORMALDEHYDE





2012-7.28\_0274 Connector walks back to building after bolting together the far tip.

photo: John Stamets



2012-5.8\_2520 Vertical tension ties photo: John Stamets

2012-8.23\_d2244

Metal cladding installation

photo: John Stamets







## **CASE STUDY #2** Eastern Washington University N.E.S.T.T.

### EASTERN WASHINGTON UNIVERSITY N.E.S.T.T. CENTER



### LEGEND

DEN

1. NESTT Building 2. Outdoor Kitchen 3. Palouse Prairie Habitat 4. Shrub Steppe Habitat 5. Ponderosa Pine Habitat 6. Channelized Scabland Wetland Habitat 7. Permaculture Garden 8. Organic Agriculture 9. Ethnobotanical Garden 10. Loop Trail

STUDENT FAMILY

# WASHINGTON STREET

111

A

EWU CHILDREN'S CENTER

and the second second second

W STEVENTH STREET

-

A 13

RED BARN PARKING LOT

-

H

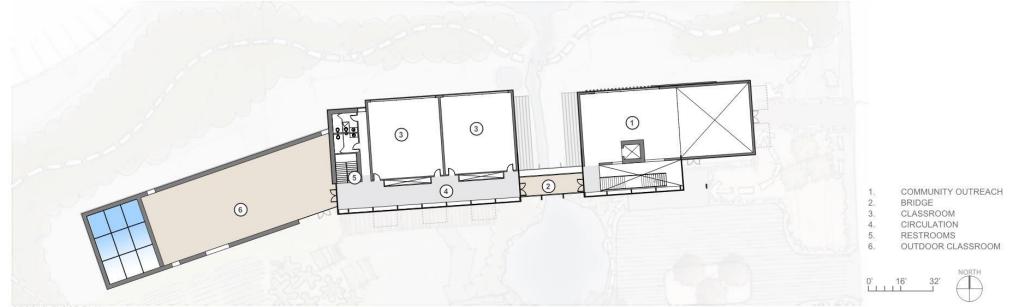
Scale: 1"=32'-0

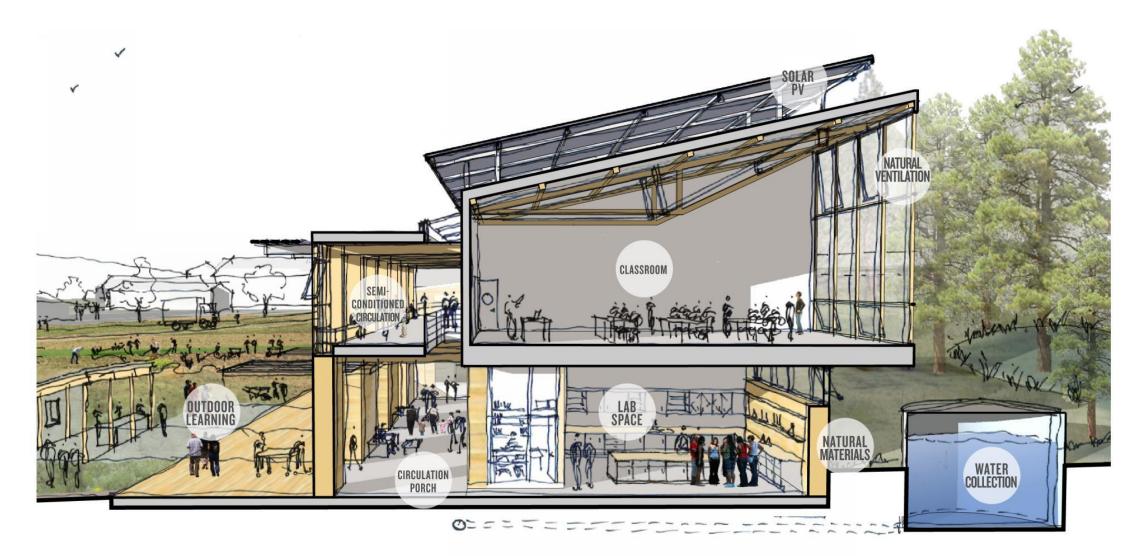
32'

(de)






### **BUILDING CONCEPT**

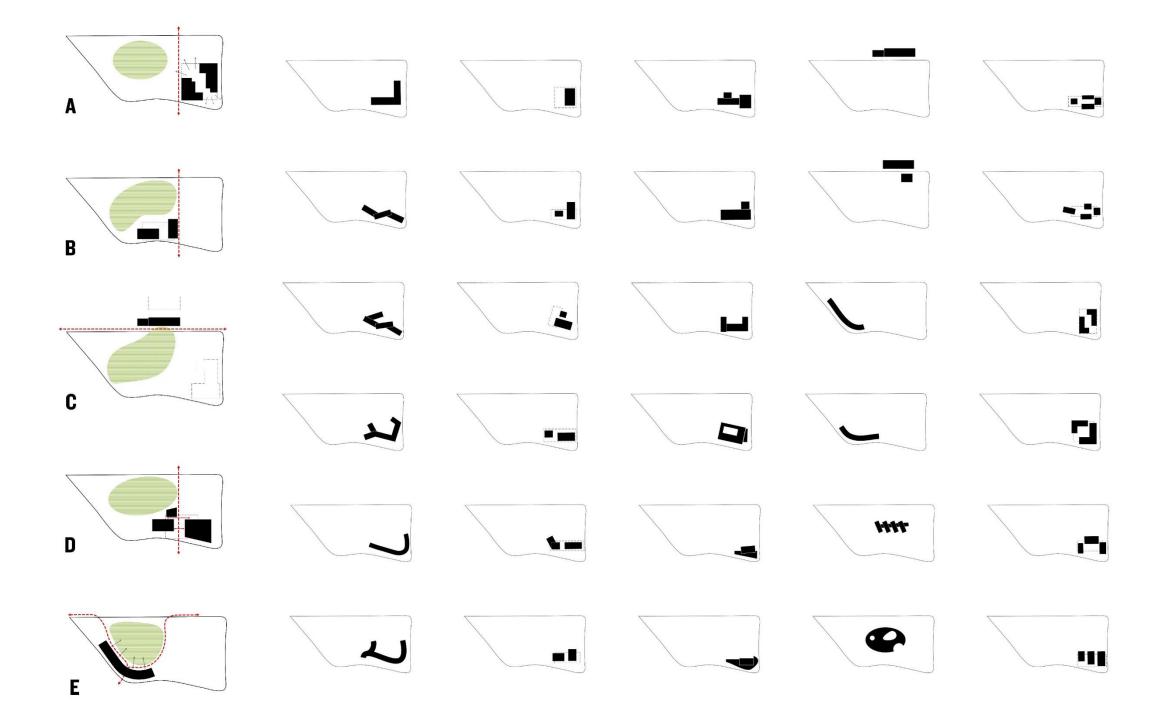

SOUTH ELEVATION

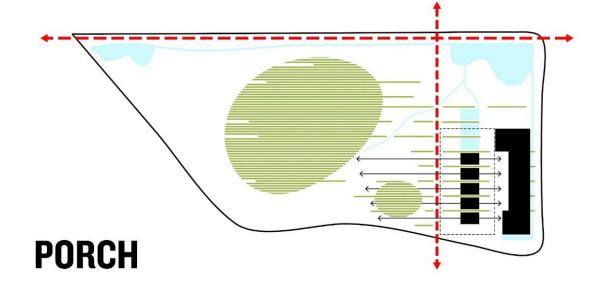
8



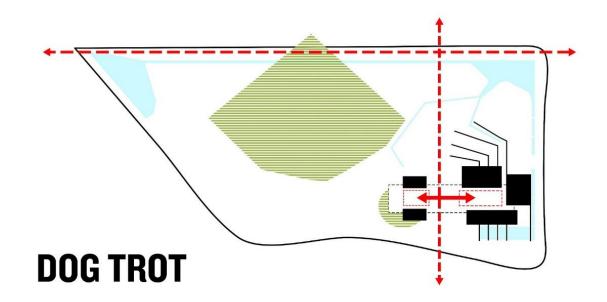
SECOND FLOOR PLAN



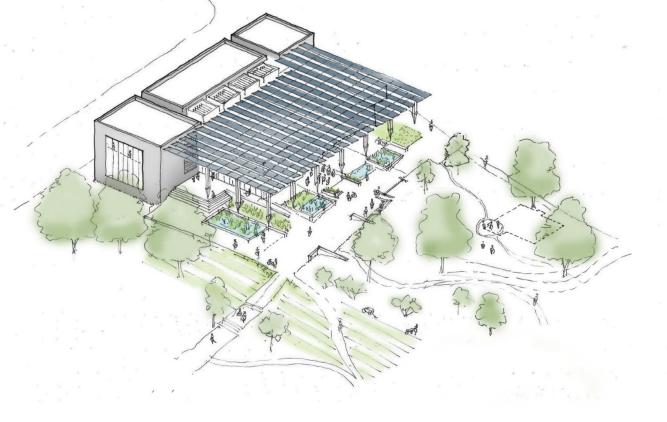




By meeting the Living Building Challenge, the building will be a showcase for sustainable practices, going beyond LEED's highest standard and provide the public with a model of how careful and planned construction can add to the value of the community and be a positive impact on the natural environment.




## **CASE STUDY #3** Georgia Institute of Technology Living Building

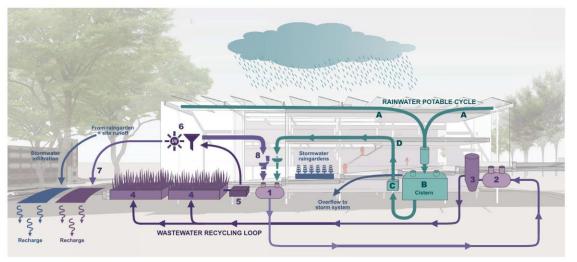










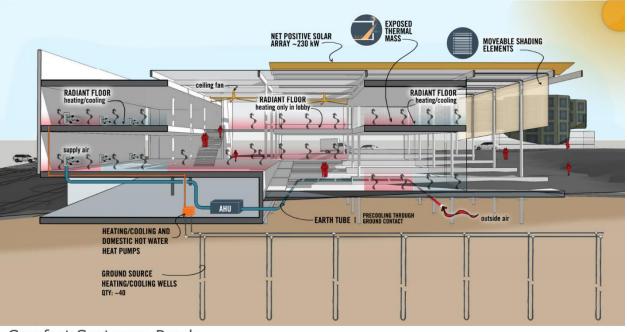








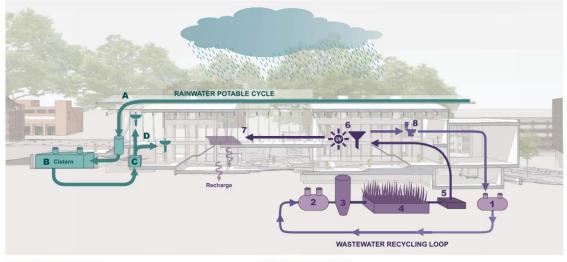




WASTEWATER RECYCLING LOOP

RAINWATER POTABLE CYCLE

PAE

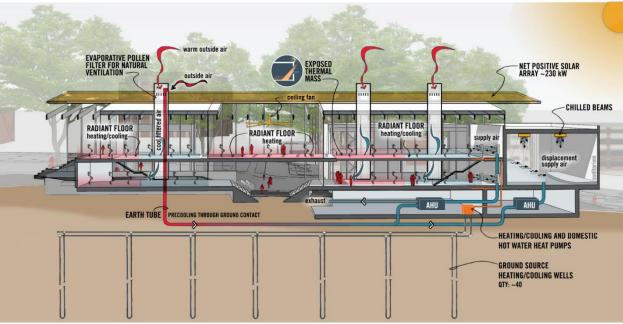
March 9, 2016


pae-engineers.com Portland 1 San Francisco / Seattle

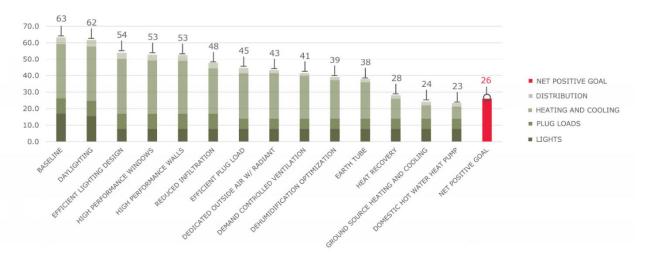


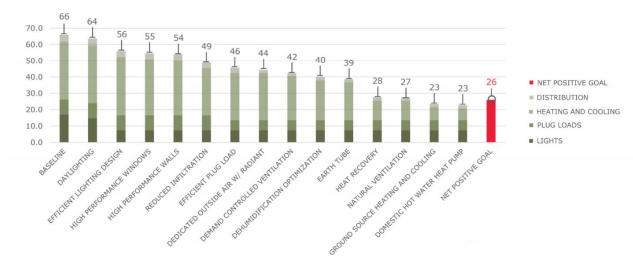
Comfort Systems: Porch - Georgia Tech

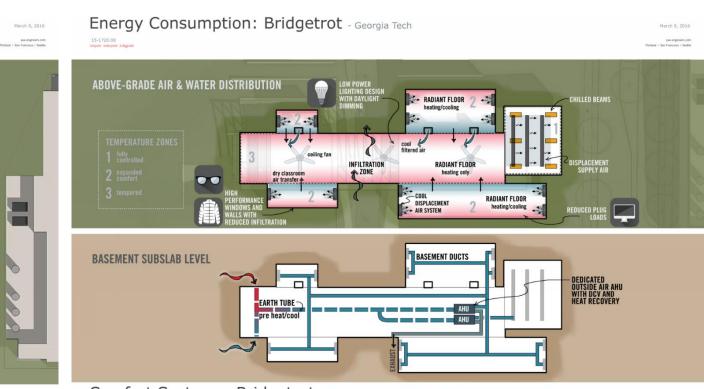
15-1720.00 inspire interpret integrate


#### NET POSITIVE WATER CYCLE SYSTEMS




WASTEWATER RECYCLING LOOP


RAINWATER POTABLE CYCLE


PAE



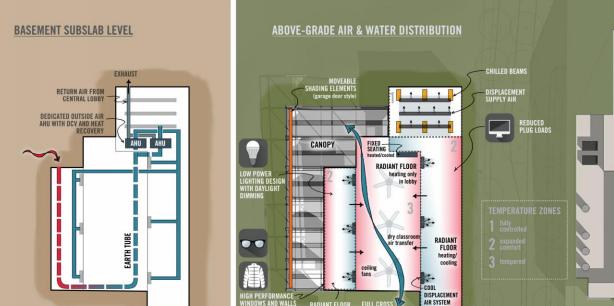
Comfort Systems: Bridgetrot - Georgia Tech







### Comfort Systems: Bridgetrot - Georgia Tech


15-1720.00 impire interpret integrate

March 9, 2016

pae-engineers.com Portland I San Francisco I Seattle

March 9, 2016

pae-engineers.com fortland 1 San Francisco 1 Seattle



RADIANT FLC

Comfort Systems: Porch - Georgia Tech

Energy Consumption: Porch - Georgia Tech



15-1720.00 inspire interpret integrate



### PORCH

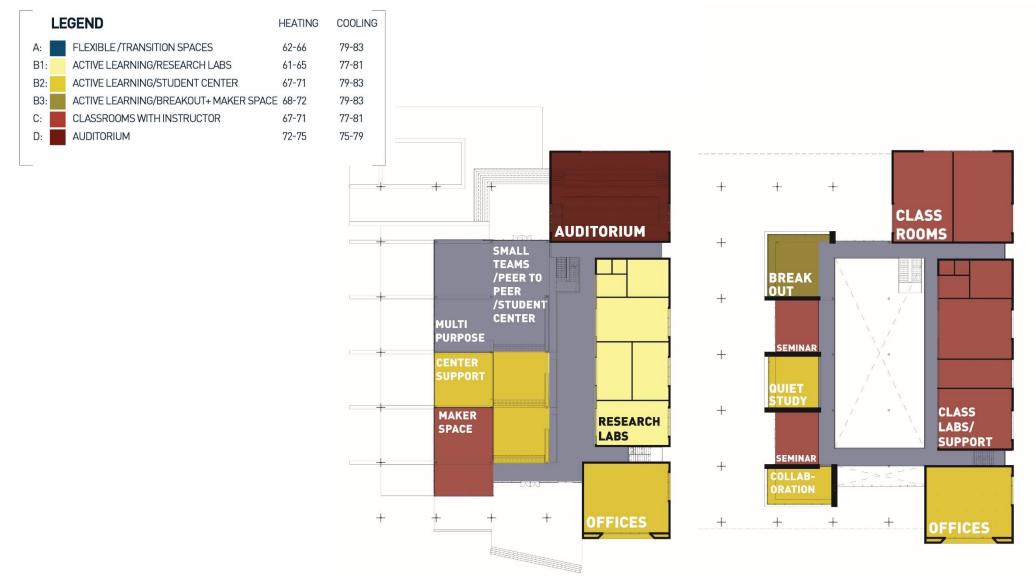
Pros:

- Compact, efficient shape, lower skin to area ratio
- more completely blocks noise from NanoTech
- demonstration opportunity with active solar controls on east and west (not every building has an ideal alignment)
- north south axis of atrium reinforces connection to Circadian rhythm—solar noon
- engagement of knoll and creation of outdoor room Cons:
- longer east and west exposures
- less site opportunities for gravity flow stormwater detention and infiltration

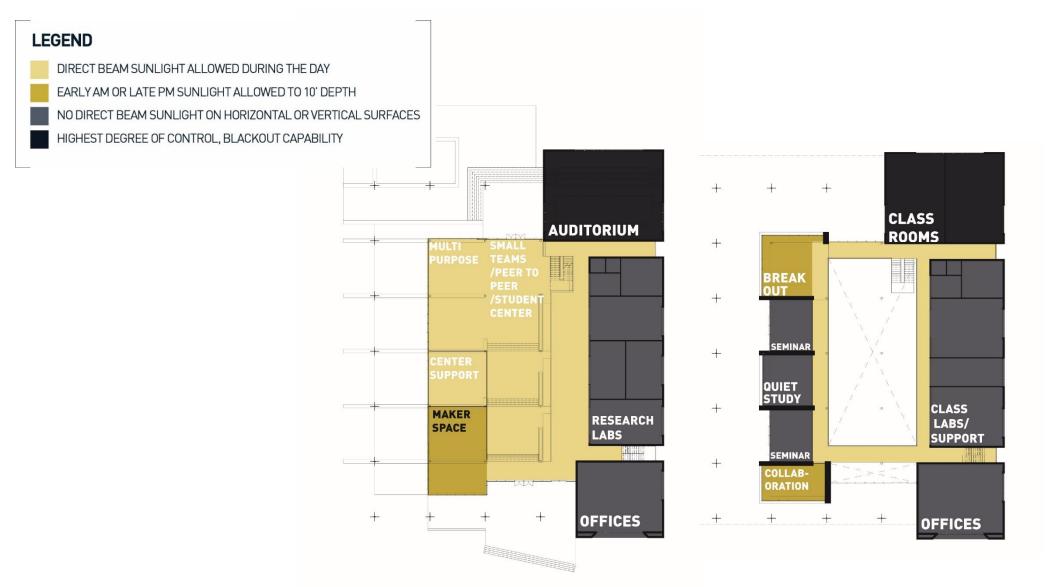


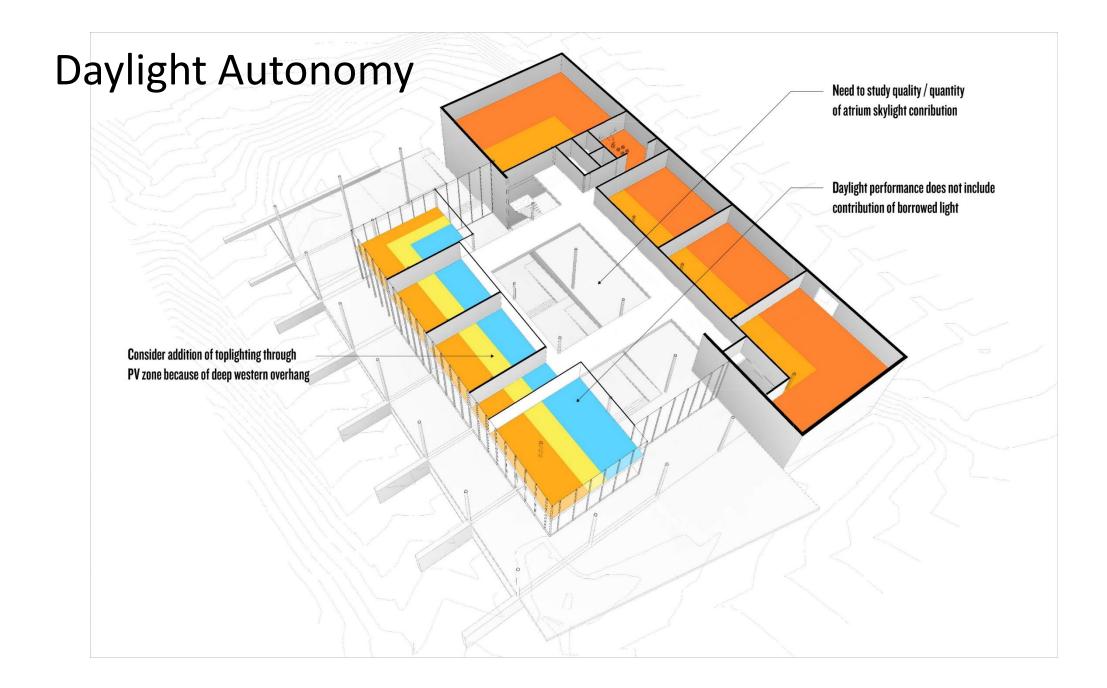
### DOGTROT

Pros:

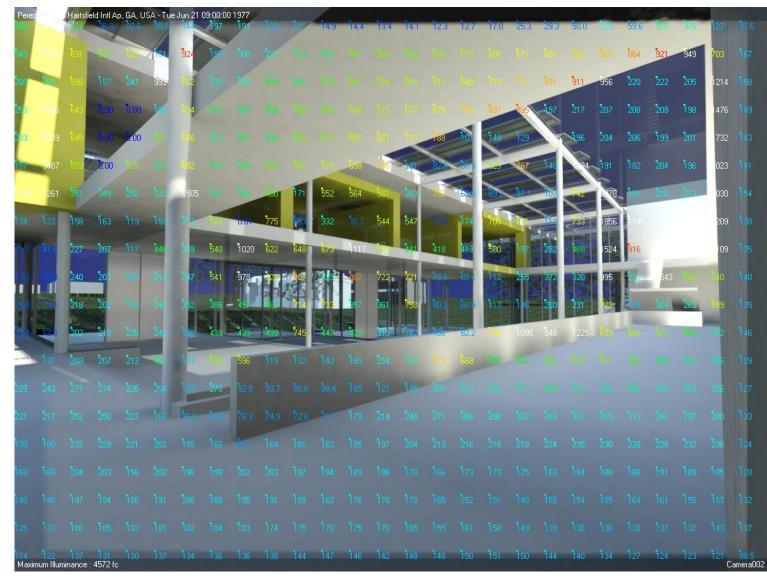

- better passive solar orientation and daylighting
- strong connection and engagement with the knoll and ecocommons
- active dynamic space at the Dalney Street cross-axis
- better passive downdraft pollen filter opportunity
- greater opportunity for gravity flow stormwater detention and retention

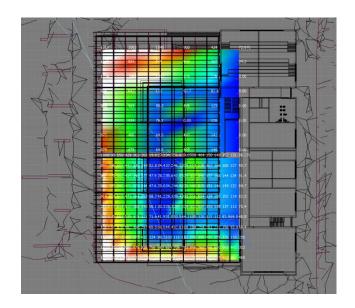
Cons:


- higher skin to area ratio
- requires removal of one significant tree




### Building Planning – Temperature Boundary Types





### Building Planning – Daylighting Program Types











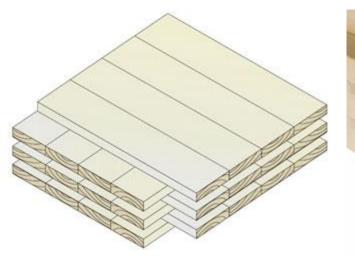


### Porch – June 21 - 9am

## **RAINWATER CATCHMENT** STORMWATER RAINGARDEN TRICKLE FILTER CONSTRUCTED WETLANDS SUBSURFACE INFILTRATION

## **PORCH – WATER SYSTEM INTEGRATION**








### The Living Building @ Georgia Tech Decision Criteria for Structural Systems 29-Aug-16

| Structural System          | \$/SF      | Code<br>Consideration | Embodied<br>Energy Factor | Carbon Estimate | Components<br>within Radius? | Components<br>from GA<br>sources? | Components on<br>Red List?                           | Thermal comfort | Acoustical comfort                                  | Daylight Impact | Interior Flexibility                                  | PV canopy integration | Biophilia  | Innate Beauty*** | Notes:                                                                                                                                      |
|----------------------------|------------|-----------------------|---------------------------|-----------------|------------------------------|-----------------------------------|------------------------------------------------------|-----------------|-----------------------------------------------------|-----------------|-------------------------------------------------------|-----------------------|------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Heavy Timber               | \$\$\$%    | Allowable             | 1                         | BEST            | BETTER                       | BETTER                            | Yes- Minor                                           | BETTER          | BETTER                                              | BETTER          | BETTER                                                | ACCEPTABLE            | BEST       |                  | Formaldehyde in engineered wood<br>components. Allowable Exceptions<br>under LBC 3.1<br>Structure becomes the finish- uses<br>less material |
| CIP Concrete w/PT<br>Slabs | \$\$\$\$   | Allowable             | 5                         | ACCEPTABLE      | BETTER                       | BETTER                            | Yes-<br>Significant                                  | BEST            | Requires greatest<br>level of acoustic<br>treatment | BEST            | ACCEPTABLE-<br>Future Floor<br>pentrations<br>limited | ACCEPTABLE            | ACCEPTABLE |                  | PVC tendon sheaths. More research<br>on all additive ingredients of<br>concrete required.<br>Formwork will need to be salvage or<br>FSC     |
| CIP Concrete               | \$\$\$\$\$ | Allowable             | 5                         | ACCEPTABLE      | BETTER                       | BETTER                            | Yes-extent<br>unknown                                | BEST            | Requires greatest<br>level of acoustic<br>treatment | BETTER          | ACCEPTABLE                                            | ACCEPTABLE            | ACCEPTABLE |                  | More research on all additive<br>ingredients of concrete required.<br>Formwork will need to be salvage or<br>FSC                            |
| Steel                      | \$\$\$     | Allowable             | 28                        | HIGH            | BEST                         | BEST                              | No- but will<br>require<br>coatings and<br>finishing | ACCEPTABLE      | ACCEPTABLE                                          | BETTER          | BEST                                                  | BEST                  | ACCEPTABLE | BETTER           | Research components of finishes to<br>apply to steel. More research on all<br>additive ingredients of concrete<br>topping slabs required.   |

## WHAT IS NEXT? TALL WOOD



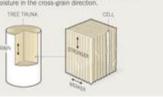
### London Apartment Building, Andrew Waugh



## **CROSS-LAMINATED TIMBER (CLT)**



#### THE BUILDING BLOCKS


The panels, made of three or five layers, are up to 6 inches thick and 30 feet long. But thicker and bigger panels can be made.



panels burn, their surface becomes charred. Charming can slow the fire and protect the inner core from heating, keeping it structurally sound. Panels with more layers of wood last longer in a fire. Typically walls and cellings are covered with plasterboard to further roduce risk of the fire.

#### STRUCTURE OF WOOD

Long tubular cells of the tree trunk make wood strongest and most stable in the direction of the grain, and weaker and more prone to expansion and shrinkage due to mosture in the cross-grain direction.



#### MAKING THE PANELS

Layers of spruce boards are glued tagether. To Computer-controlled machinery in the factory birns the provide maximum strength and stability, each layer's partie is laid perpendicular to the previous one's, windows and other installations.

insulation is installed

on the exterior of the

wood panels

Concrete struct

transfers the load

to the foundation

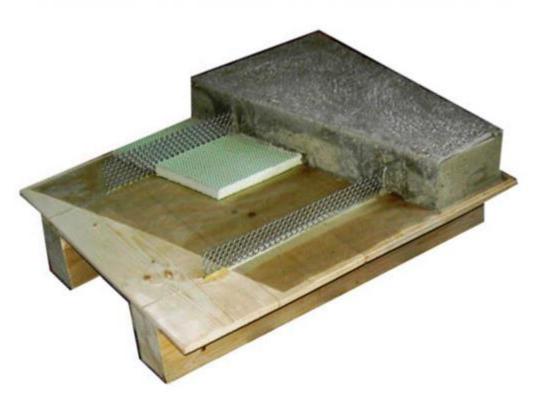




WOOD PRAIL!

INSTALING ELEMENTS Floors and walls can be lifted in place with a mobile crane. Metal brackets and screws are used to join panels together.




ELEWICH SHUPT For fire safety and soundproofing, the elevator shafts and stainvells have double waits with an insulating layer between.



ACONG STRENGTH In areas of high stress where walls press into the floor, additional screws or nails can be driven into the floor to distribute the surface load deeper into the panel.

## **CONCRETE+TIMBER HYBRID PANELS, CAST-IN-PLACE (CIP)**





## **CONCRETE+TIMBER HYBRID PREFABRICATED PANELS**

LIFE CYCLE TOWER, CREE, AUSTRIA







**Bullitt Center, The Miller Hull Partnership** 

Wood Innovation Center, Michael Green Associates

COMPLETE

### **6 STORIES—SEATTLE**

## **7 STORIES-CANADA**

COMPLETE



**Office Building, Michael Green Associates** 



**Apartment Building, Andrew Waugh** 

IN CONSTRUCTION

COMPLETE

## **7 STORIES-MINNEAPOLIS**

## **9 STORIES-LONDON**

## **14 STORIES-NORWAY**

## **14 STORIES—VANCOUVER,**

IN CONSTRUCTION

University of British Columbia, Acton Ostry Architects



IN CONSTRUCTION



WSU Spokane student housing proposal, The Miller Hull Partnership

**IN DESIGN** 







A rainscreen system made up of metal panels protects the CLT shear wall panels from the elements and provides a contrast to the warmth of the exposed wood structural systems.

#### **WOOD CURTAIN WALL**

In keeping with the natural wood materials used through, the project proposes the use of a wood curtain wall system, where standard aluminum mullions are replaced with sustainable engineered wood.

#### DAYLIGHTING

The masonry wall at the southwest corner of the existing 2-story building has been carved open revealing heaving timber frame tained, a combination of CLT shear walls and providing a sunny outdoor connection for new gather functions inside.

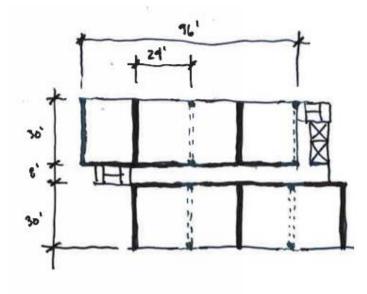
#### SEISMIC UPGRADE

While the load bearing exterior masonry walls of the existing building are mainand timber brace frames wrap the new data center core providing the required seismic upgrade.



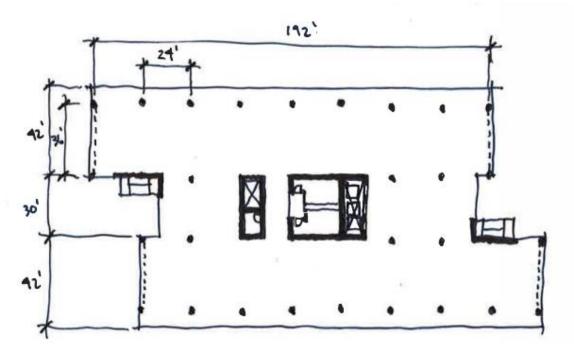
#### TALL WOOD OPTION 1

- 7000sf floor plate optimized for site and smaller spaces (clinics, offices on-campus; apartments off-campus)
- Distributed shear walls
- 84,000 TOTAL GSF; 71,400 net rentable area

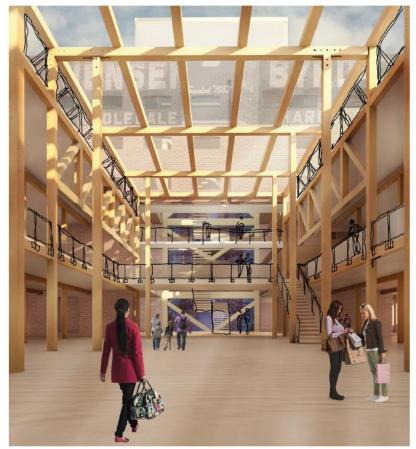



#### **TALL WOOD OPTION 2**

- 20,000sf floor plate optimized for open office configuration
- · Central core and brace frames at perimeter
- 140,000 TOTAL GSF; 119,000 net rentable area

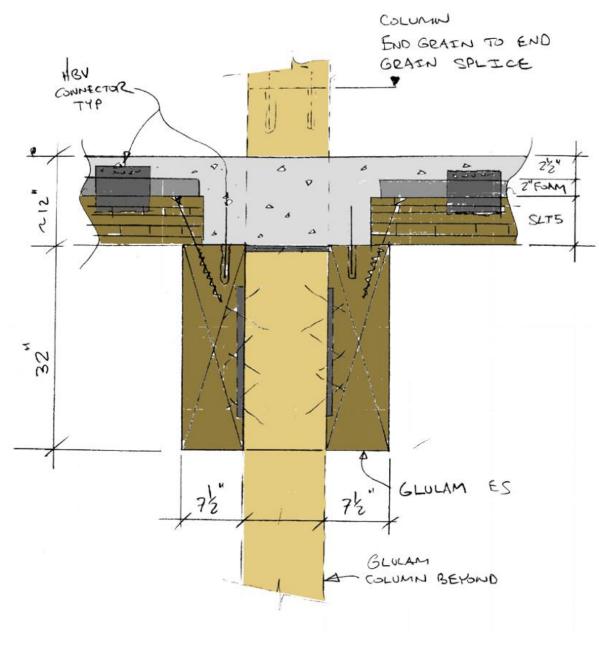

#### TALL WOOD OPTION 1

- 7000sf floor plate optimized for site and smaller spaces (clinics, offices on-campus; apartments off-campus)
- · Distributed shear walls
- · 84,000 TOTAL GSF; 71,400 net rentable area




#### **TALL WOOD OPTION 2**

- 20,000sf floor plate optimized for open office configuration
- · Central core and brace frames at perimeter
- · 140,000 TOTAL GSF; 119,000 net rentable area




#### 1.2.7 PROGRAMMING: BUILDING ENCLOSURE (continued)



#### MARKET HALL

While the two story portion of the Jensen-Byrd building was originally constructed with a clerestory roof, the windows had long since been removed and filled in with walls. The clerestory will be restored and continuous second floor removed below it bringing natural light and ventilation to first floor and newly configured second floor mezzanine. This space provide a new home for University bookstore, food service, study areas and other complimentary commercial needs. The connection to the six story portion of the Jensen-Byrd has been enlarged to a two story connection with views through new timber lateral brace frames to the date servers which are on full display providing an iconic counterpoint to the Timber Innovation Center.





Paris Tower proposal, Michael Green Associates

DESIGN PROPOSAL

# **35 STORIES-PARIS**

**Timber Tower Research Project, SOM** 

42 STORIES—?

**RESEARCH PROPOSAL** 

# GRACIAS

BRIAN COURT, AIA, LEED AP briancourt@millerhull.com

## **The MILLER HULL Partnership**

Seattle, Washington









**ELLIOTT BAY** 

Elliott Bay Seawall Project (Phase 2)

Elliott Bay Seawall Project (Phase 1: 2013-2016)

**Partner Projects** 

Waterfront Seattle (Core Project: 2016+ Potential Early Projects: 2012-2015)

> SR 99 Tunnel Project (2011-2015)

WATERFRONT SEATTLE ELLIOTT BAY SEAWALL PROJECT SR 99 TUNNEL PROJECT PARTNER PROJECTS

Sources: City of Seattle BIS, Google meps, SDDT 2 Bike Map, ROMA 2002 Urb on Dealon Assessment

Project construction dates are tentative and subject to cleange



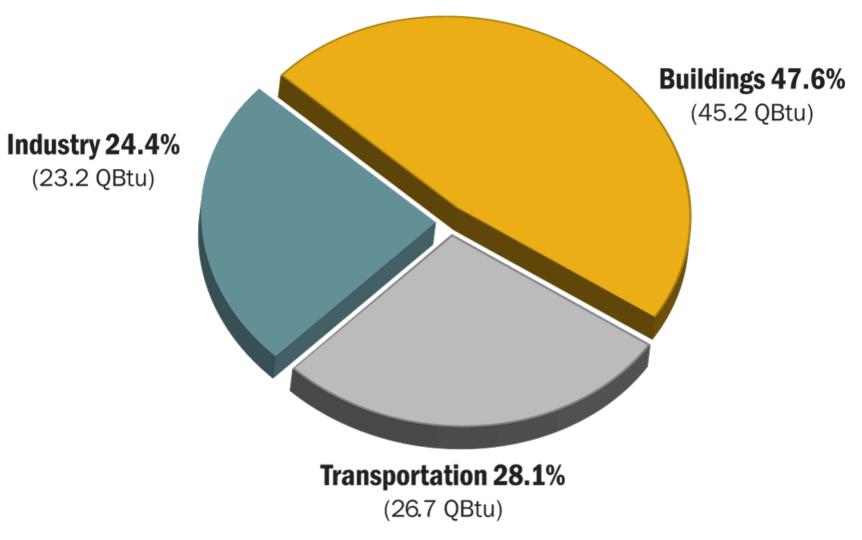








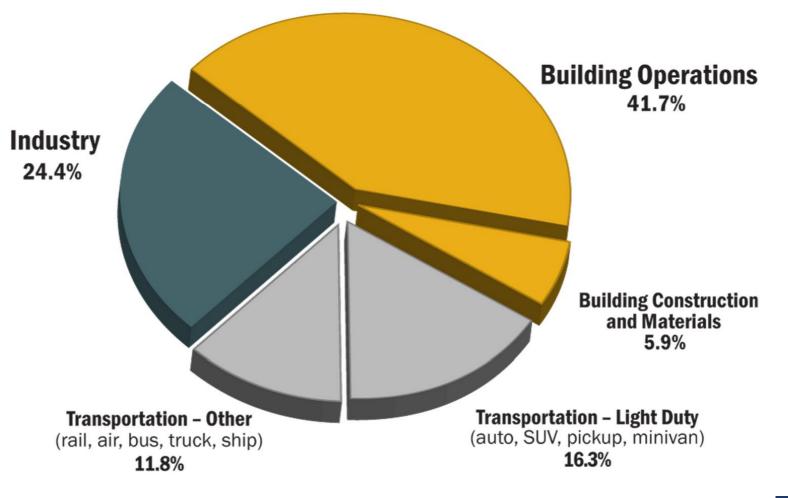













## **U.S. Energy Consumption by Sector**

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).





### **U.S. Energy Consumption by Sector**

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).





LVL courtesy Michael Green Associates

## LAMINATED VENEER LUMBER (LVL)



Parallel Strand Lumber (PSL) courtesy Michael Green Associates

Laminated Strand Lumber (LSL) courtesy Michael Green Associates

## STAND LUMBER (PSL + LSL)